Zhenxing Yang, Yuwen He, Susheng Li, Jinxin Meng, Nan Li, Jinglin Wang
{"title":"Isolation and Genomic Characterization of Kadipiro Virus from Mosquitoes in Yunnan, China.","authors":"Zhenxing Yang, Yuwen He, Susheng Li, Jinxin Meng, Nan Li, Jinglin Wang","doi":"10.1089/vbz.2023.0157","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Kadipiro virus (KDV) is a species of the new 12 segmented RNA virus grouped under the genus <i>Seadornavirus</i> within the <i>Reoviridae</i> family. It has previously been isolated or detected from <i>mosquito</i>, <i>Odonata</i>, and bat feces in Indonesia, China, and Denmark, respectively. Here, we describe the isolation and characterization of a viral strain from mosquitoes in Yunnan Province, China. <b><i>Methods:</i></b> Mosquitoes were collected overnight using light traps in Shizong county, on July 17, 2023. Virus was isolated from the mosquito homogenate and grown using baby hamster kidney and <i>Aedes albopictus</i> (C6/36) cells. Preliminary identification of the virus was performed by agarose gel electrophoresis (AGE). The full-genome sequences of the strain were determined by full-length amplification of cDNAs and sequenced using next-generation sequencing. <b><i>Results:</i></b> We isolated a viral strain (SZ_M48) from mosquitoes (<i>Culex tritaeniorhynchus Giles</i>) that caused cytopathogenic effects in C6/36 cells. AGE analysis indicated a genome consisting of 12 segments of double-stranded RNA that demonstrated a \"6-5-1\" pattern, similar to the migrating bands of KDV. Phylogenetic analysis based on the full-genome sequence revealed that SZ_M48 is more clustered with KDV isolates from Hubei and Shangdong in China than with Indonesian and Danish strains. The identity between SZ_M48 and SDKL1625 (Shandong, China) is slightly lower than that of QTM27331 (Hubei, China), and the identity with JKT-7075 (Indonesia) and 21164-6/M.dau/DK (Denmark) is the lowest. <b><i>Conclusion:</i></b> The full-genome sequence of the new KDV strain described in this study may be useful for surveillance of the evolutionary characteristics of KDVs. Moreover, these findings extend the knowledge about the genomic diversity, potential vectors, and the distribution of KDVs in China.</p>","PeriodicalId":23683,"journal":{"name":"Vector borne and zoonotic diseases","volume":" ","pages":"532-539"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vector borne and zoonotic diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/vbz.2023.0157","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Kadipiro virus (KDV) is a species of the new 12 segmented RNA virus grouped under the genus Seadornavirus within the Reoviridae family. It has previously been isolated or detected from mosquito, Odonata, and bat feces in Indonesia, China, and Denmark, respectively. Here, we describe the isolation and characterization of a viral strain from mosquitoes in Yunnan Province, China. Methods: Mosquitoes were collected overnight using light traps in Shizong county, on July 17, 2023. Virus was isolated from the mosquito homogenate and grown using baby hamster kidney and Aedes albopictus (C6/36) cells. Preliminary identification of the virus was performed by agarose gel electrophoresis (AGE). The full-genome sequences of the strain were determined by full-length amplification of cDNAs and sequenced using next-generation sequencing. Results: We isolated a viral strain (SZ_M48) from mosquitoes (Culex tritaeniorhynchus Giles) that caused cytopathogenic effects in C6/36 cells. AGE analysis indicated a genome consisting of 12 segments of double-stranded RNA that demonstrated a "6-5-1" pattern, similar to the migrating bands of KDV. Phylogenetic analysis based on the full-genome sequence revealed that SZ_M48 is more clustered with KDV isolates from Hubei and Shangdong in China than with Indonesian and Danish strains. The identity between SZ_M48 and SDKL1625 (Shandong, China) is slightly lower than that of QTM27331 (Hubei, China), and the identity with JKT-7075 (Indonesia) and 21164-6/M.dau/DK (Denmark) is the lowest. Conclusion: The full-genome sequence of the new KDV strain described in this study may be useful for surveillance of the evolutionary characteristics of KDVs. Moreover, these findings extend the knowledge about the genomic diversity, potential vectors, and the distribution of KDVs in China.
期刊介绍:
Vector-Borne and Zoonotic Diseases is an authoritative, peer-reviewed journal providing basic and applied research on diseases transmitted to humans by invertebrate vectors or non-human vertebrates. The Journal examines geographic, seasonal, and other risk factors that influence the transmission, diagnosis, management, and prevention of this group of infectious diseases, and identifies global trends that have the potential to result in major epidemics.
Vector-Borne and Zoonotic Diseases coverage includes:
-Ecology
-Entomology
-Epidemiology
-Infectious diseases
-Microbiology
-Parasitology
-Pathology
-Public health
-Tropical medicine
-Wildlife biology
-Bacterial, rickettsial, viral, and parasitic zoonoses