Acoustic manipulation of multi-body structures and dynamics.

Melody X Lim, Bryan VanSaders, Heinrich M Jaeger
{"title":"Acoustic manipulation of multi-body structures and dynamics.","authors":"Melody X Lim, Bryan VanSaders, Heinrich M Jaeger","doi":"10.1088/1361-6633/ad43f9","DOIUrl":null,"url":null,"abstract":"<p><p>Sound can exert forces on objects of any material and shape. This has made the contactless manipulation of objects by intense ultrasound a fascinating area of research with wide-ranging applications. While much is understood for acoustic forcing of individual objects, sound-mediated interactions among multiple objects at close range gives rise to a rich set of structures and dynamics that are less explored and have been emerging as a frontier for research. We introduce the basic mechanisms giving rise to sound-mediated interactions among rigid as well as deformable particles, focusing on the regime where the particles' size and spacing are much smaller than the sound wavelength. The interplay of secondary acoustic scattering, Bjerknes forces, and micro-streaming is discussed and the role of particle shape is highlighted. Furthermore, we present recent advances in characterizing non-conservative and non-pairwise additive contributions to the particle interactions, along with instabilities and active fluctuations. These excitations emerge at sufficiently strong sound energy density and can act as an effective temperature in otherwise athermal systems.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on progress in physics. Physical Society (Great Britain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6633/ad43f9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sound can exert forces on objects of any material and shape. This has made the contactless manipulation of objects by intense ultrasound a fascinating area of research with wide-ranging applications. While much is understood for acoustic forcing of individual objects, sound-mediated interactions among multiple objects at close range gives rise to a rich set of structures and dynamics that are less explored and have been emerging as a frontier for research. We introduce the basic mechanisms giving rise to sound-mediated interactions among rigid as well as deformable particles, focusing on the regime where the particles' size and spacing are much smaller than the sound wavelength. The interplay of secondary acoustic scattering, Bjerknes forces, and micro-streaming is discussed and the role of particle shape is highlighted. Furthermore, we present recent advances in characterizing non-conservative and non-pairwise additive contributions to the particle interactions, along with instabilities and active fluctuations. These excitations emerge at sufficiently strong sound energy density and can act as an effective temperature in otherwise athermal systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多体结构和动力学的声学操纵。
声音可以对任何材料和形状的物体施加力。因此,通过强烈的超声波对物体进行非接触式操纵成为一个具有广泛应用的迷人研究领域。虽然人们对单个物体的声学作用力已经有了很多了解,但近距离内多个物体之间以声音为媒介的相互作用却产生了一系列丰富的结构和动力学,而人们对这些结构和动力学的探索还比较少,这些结构和动力学正在成为研究的前沿领域。我们介绍了刚性颗粒和可变形颗粒之间以声音为媒介的相互作用的基本机制,重点是颗粒尺寸和间距远小于声音波长的情况。我们讨论了二次声散射、Bjerknes 力和微流的相互作用,并强调了颗粒形状的作用。此外,我们还介绍了在描述粒子相互作用的非守恒和非成对相加贡献以及不稳定性和活跃波动方面的最新进展。这些激发在足够强的声能密度下出现,并能在其他非热系统中充当有效温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smoothed particle hydrodynamics for free-surface and multiphase flows: a review. Liquid-liquid crystalline phase separation of filamentous colloids and semiflexible polymers: experiments, theory and simulations. Interatomic Coulombic decay in lithium-doped large helium nanodroplets induced by photoelectron impact excitation. Corrigendum: A review of UTe2at high magnetic fields (2023Rep. Prog. Phys.86 114501). Transport resistance strikes back: unveiling its impact on fill factor losses in organic solar cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1