Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes.

Ba-Hien Tran, Babak Shahbaba, Stephan Mandt, Maurizio Filippone
{"title":"Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes.","authors":"Ba-Hien Tran, Babak Shahbaba, Stephan Mandt, Maurizio Filippone","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We present a fully Bayesian autoencoder model that treats both local latent variables and global decoder parameters in a Bayesian fashion. This approach allows for flexible priors and posterior approximations while keeping the inference costs low. To achieve this, we introduce an amortized MCMC approach by utilizing an implicit stochastic network to learn sampling from the posterior over local latent variables. Furthermore, we extend the model by incorporating a Sparse Gaussian Process prior over the latent space, allowing for a fully Bayesian treatment of inducing points and kernel hyperparameters and leading to improved scalability. Additionally, we enable Deep Gaussian Process priors on the latent space and the handling of missing data. We evaluate our model on a range of experiments focusing on dynamic representation learning and generative modeling, demonstrating the strong performance of our approach in comparison to existing methods that combine Gaussian Processes and autoencoders.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"202 ","pages":"34409-34430"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11031196/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a fully Bayesian autoencoder model that treats both local latent variables and global decoder parameters in a Bayesian fashion. This approach allows for flexible priors and posterior approximations while keeping the inference costs low. To achieve this, we introduce an amortized MCMC approach by utilizing an implicit stochastic network to learn sampling from the posterior over local latent variables. Furthermore, we extend the model by incorporating a Sparse Gaussian Process prior over the latent space, allowing for a fully Bayesian treatment of inducing points and kernel hyperparameters and leading to improved scalability. Additionally, we enable Deep Gaussian Process priors on the latent space and the handling of missing data. We evaluate our model on a range of experiments focusing on dynamic representation learning and generative modeling, demonstrating the strong performance of our approach in comparison to existing methods that combine Gaussian Processes and autoencoders.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有潜在稀疏高斯过程的完全贝叶斯自动编码器。
我们提出了一种完全贝叶斯自动编码器模型,它以贝叶斯方式处理局部潜变量和全局解码器参数。这种方法允许灵活的先验和后验近似,同时保持较低的推理成本。为此,我们引入了一种摊销 MCMC 方法,利用隐式随机网络从局部潜变量的后验中学习采样。此外,我们还对模型进行了扩展,在潜变量空间中加入了稀疏高斯过程先验,允许对诱导点和内核超参数进行全贝叶斯处理,从而提高了可扩展性。此外,我们还启用了潜空间的深度高斯过程先验,并处理了缺失数据。我们在一系列侧重于动态表示学习和生成建模的实验中对我们的模型进行了评估,结果表明,与结合高斯过程和自动编码器的现有方法相比,我们的方法具有很强的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning for Clinical Outcome Prediction with Partial Data Sources. Multi-Source Conformal Inference Under Distribution Shift. DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation. Kernel Debiased Plug-in Estimation: Simultaneous, Automated Debiasing without Influence Functions for Many Target Parameters. Adapt and Diffuse: Sample-Adaptive Reconstruction Via Latent Diffusion Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1