Hanya Ahmed, Qianni Zhang, Robert Donnan, Akram Alomainy
{"title":"Transformer enhanced autoencoder rendering cleaning of noisy optical coherence tomography images.","authors":"Hanya Ahmed, Qianni Zhang, Robert Donnan, Akram Alomainy","doi":"10.1117/1.JMI.11.3.034008","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Optical coherence tomography (OCT) is an emerging imaging tool in healthcare with common applications in ophthalmology for detection of retinal diseases, as well as other medical domains. The noise in OCT images presents a great challenge as it hinders the clinician's ability to diagnosis in extensive detail.</p><p><strong>Approach: </strong>In this work, a region-based, deep-learning, denoising framework is proposed for adaptive cleaning of noisy OCT-acquired images. The core of the framework is a hybrid deep-learning model named transformer enhanced autoencoder rendering (TEAR). Attention gates are utilized to ensure focus on denoising the foreground and to remove the background. TEAR is designed to remove the different types of noise artifacts commonly present in OCT images and to enhance the visual quality.</p><p><strong>Results: </strong>Extensive quantitative evaluations are performed to evaluate the performance of TEAR and compare it against both deep-learning and traditional state-of-the-art denoising algorithms. The proposed method improved the peak signal-to-noise ratio to 27.9 dB, CNR to 6.3 dB, SSIM to 0.9, and equivalent number of looks to 120.8 dB for a dental dataset. For a retinal dataset, the performance metrics in the same sequence are: 24.6, 14.2, 0.64, and 1038.7 dB, respectively.</p><p><strong>Conclusions: </strong>The results show that the approach verifiably removes speckle noise and achieves superior quality over several well-known denoisers.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 3","pages":"034008"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058346/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.3.034008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Optical coherence tomography (OCT) is an emerging imaging tool in healthcare with common applications in ophthalmology for detection of retinal diseases, as well as other medical domains. The noise in OCT images presents a great challenge as it hinders the clinician's ability to diagnosis in extensive detail.
Approach: In this work, a region-based, deep-learning, denoising framework is proposed for adaptive cleaning of noisy OCT-acquired images. The core of the framework is a hybrid deep-learning model named transformer enhanced autoencoder rendering (TEAR). Attention gates are utilized to ensure focus on denoising the foreground and to remove the background. TEAR is designed to remove the different types of noise artifacts commonly present in OCT images and to enhance the visual quality.
Results: Extensive quantitative evaluations are performed to evaluate the performance of TEAR and compare it against both deep-learning and traditional state-of-the-art denoising algorithms. The proposed method improved the peak signal-to-noise ratio to 27.9 dB, CNR to 6.3 dB, SSIM to 0.9, and equivalent number of looks to 120.8 dB for a dental dataset. For a retinal dataset, the performance metrics in the same sequence are: 24.6, 14.2, 0.64, and 1038.7 dB, respectively.
Conclusions: The results show that the approach verifiably removes speckle noise and achieves superior quality over several well-known denoisers.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.