Enantiomer-specific analysis of amphetamine in urine, oral fluid and blood.

IF 2.3 3区 医学 Q3 CHEMISTRY, ANALYTICAL Journal of analytical toxicology Pub Date : 2024-06-11 DOI:10.1093/jat/bkae038
Eirin Bakke, Mariann Nilsen Terland, Dag Helge Strand, Elisabeth Leere Øiestad, Gudrun Høiseth
{"title":"Enantiomer-specific analysis of amphetamine in urine, oral fluid and blood.","authors":"Eirin Bakke, Mariann Nilsen Terland, Dag Helge Strand, Elisabeth Leere Øiestad, Gudrun Høiseth","doi":"10.1093/jat/bkae038","DOIUrl":null,"url":null,"abstract":"<p><p>Illegal amphetamine is usually composed of a racemic mixture of the two enantiomers (S)- and (R)-amphetamine. However, when amphetamine is used in medical treatment, the more potent (S)-amphetamine enantiomer is used. Enantiomer-specific analysis of (S)- and (R)-amphetamine is therefore used to separate legal medical use from illegal recreational use. The aim of the present study was to describe our experience with enantiomer-specific analysis of amphetamine in urine and oral fluid, as well as blood, and examine whether the distribution of the two enantiomers seems to be the same in different matrices. We investigated 1,722 urine samples and 1,977 oral fluid samples from prison inmates, and 652 blood samples from suspected drugged drivers, where prescription of amphetamine was reported. Analyses were performed using ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS-MS). The enantiomer separation was achieved by using a chiral column, and results from the method validation are reported. Samples containing <60% (S)-amphetamine were interpreted as representing illegal use of amphetamine. The distribution of the two enantiomers was compared between different matrices. In urine and oral fluid, the mean amount of (S)-amphetamine was 45.2 and 43.7%, respectively, while in blood, the mean amount of (S)-amphetamine was 45.8%. There was no statistically significant difference in the amount of (S)-amphetamine between urine and oral fluid samples and between urine and blood samples, but the difference was significant in blood compared to oral fluid samples (P < 0.001). Comparison of urine and oral fluid between similar populations indicated that enantiomers of amphetamine can be interpreted in the same way, although marginally higher amounts of (R)-amphetamine may occur in oral fluid. Oral fluid, having several advantages, especially during collection, could be a preferred matrix in testing for illegal amphetamine intake in users of medical amphetamine.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165648/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of analytical toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jat/bkae038","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Illegal amphetamine is usually composed of a racemic mixture of the two enantiomers (S)- and (R)-amphetamine. However, when amphetamine is used in medical treatment, the more potent (S)-amphetamine enantiomer is used. Enantiomer-specific analysis of (S)- and (R)-amphetamine is therefore used to separate legal medical use from illegal recreational use. The aim of the present study was to describe our experience with enantiomer-specific analysis of amphetamine in urine and oral fluid, as well as blood, and examine whether the distribution of the two enantiomers seems to be the same in different matrices. We investigated 1,722 urine samples and 1,977 oral fluid samples from prison inmates, and 652 blood samples from suspected drugged drivers, where prescription of amphetamine was reported. Analyses were performed using ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS-MS). The enantiomer separation was achieved by using a chiral column, and results from the method validation are reported. Samples containing <60% (S)-amphetamine were interpreted as representing illegal use of amphetamine. The distribution of the two enantiomers was compared between different matrices. In urine and oral fluid, the mean amount of (S)-amphetamine was 45.2 and 43.7%, respectively, while in blood, the mean amount of (S)-amphetamine was 45.8%. There was no statistically significant difference in the amount of (S)-amphetamine between urine and oral fluid samples and between urine and blood samples, but the difference was significant in blood compared to oral fluid samples (P < 0.001). Comparison of urine and oral fluid between similar populations indicated that enantiomers of amphetamine can be interpreted in the same way, although marginally higher amounts of (R)-amphetamine may occur in oral fluid. Oral fluid, having several advantages, especially during collection, could be a preferred matrix in testing for illegal amphetamine intake in users of medical amphetamine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
尿液、口服液和血液中苯丙胺对映体的特异性分析。
非法苯丙胺通常由(S)-苯丙胺和(R)-苯丙胺两种对映体的外消旋混合物组成。不过,当苯丙胺用于医疗时,使用的是药效更强的(S)-苯丙胺对映体。因此,(S)-和(R)-苯丙胺对映体的特定分析被用来区分合法医疗用途和非法娱乐用途。本研究旨在介绍我们对尿液、口服液和血液中的苯丙胺对映体进行特异性分析的经验,并研究两种对映体在不同基质中的分布是否相同。我们调查了来自监狱囚犯的 1722 份尿液样本和 1977 份口腔液样本,以及来自疑似毒驾者的 652 份血液样本,其中有报告称他们服用了苯丙胺。分析采用超高效液相色谱-质谱-质谱联用仪进行。使用手性色谱柱实现了对映体分离,并报告了方法验证结果。(S)-苯丙胺含量低于 60% 的样品被解释为代表非法使用苯丙胺。比较了两种对映体在不同基质中的分布情况。在尿液和口服液中,(S)-苯丙胺的平均含量分别为45.2%和43.7%,而在血液中,(S)-苯丙胺的平均含量为45.8%。尿液和口服液样本以及尿液和血液样本中的(S)-苯丙胺含量在统计学上没有明显差异,但血液样本中的(S)-苯丙胺含量与口服液样本中的(S)-苯丙胺含量相比差异显著(p < 0.001)。对类似人群的尿液和口腔液进行比较表明,尽管口腔液中的(R)-苯丙胺含量可能略高,但对苯丙胺对映体的解释方式是相同的。口腔液具有多种优势,尤其是在采集过程中,可以作为检测医用苯丙胺使用者非法摄入苯丙胺情况的首选基质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
20.00%
发文量
92
审稿时长
6-12 weeks
期刊介绍: The Journal of Analytical Toxicology (JAT) is an international toxicology journal devoted to the timely dissemination of scientific communications concerning potentially toxic substances and drug identification, isolation, and quantitation. Since its inception in 1977, the Journal of Analytical Toxicology has striven to present state-of-the-art techniques used in toxicology labs. The peer-review process provided by the distinguished members of the Editorial Advisory Board ensures the high-quality and integrity of articles published in the Journal of Analytical Toxicology. Timely presentation of the latest toxicology developments is ensured through Technical Notes, Case Reports, and Letters to the Editor.
期刊最新文献
Long-term stability of sufentanil quantified by UPLC-MS-MS in human plasma frozen for 11 years at -20°C. Double Designers: Detection of Bromazolam and Metonitazene in Postmortem Casework. Liquid-Liquid Extraction Solvent Selection for Comparing Illegal Drugs in Whole Blood and Dried Blood Spot with LC-MS/MS. Detection of "smoke powder" etomidate and its metabolite etomidate acid in blood and urine by UHPLC-MS/MS: Application in authentic cases. The Rise of Bromazolam in Postmortem Cases from Travis County, Texas and Surrounding Areas: 2021-2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1