{"title":"Intraspecific variation in fine root morphology of European beech: a root order-based analysis of phenotypic root morphospace.","authors":"Eva Rüther, Dietrich Hertel, Christoph Leuschner","doi":"10.1007/s00442-024-05558-3","DOIUrl":null,"url":null,"abstract":"<p><p>Fine roots are multifunctional organs that may change function with ageing or root branching events from primarily absorptive to resource transport and storage functions. It is not well understood, how fine root branching patterns and related root functional differentiation along the longitudinal root axis change with soil chemical and physical conditions. We examined the variation in fine root branching patterns (the relative frequency of 1st to 4th root orders) and root morphological and chemical traits of European beech trees with soil depth (topsoil vs. subsoil) and soil chemistry (five sites with acid to neutral/alkaline bedrock). Bedrock type and related soil chemistry had an only minor influence on branching patterns: base-poor, infertile sites showed no higher fine root branching than base-rich sites. The contribution of 1st-order root segments to total fine root length decreased at all sites from about 60% in the topsoil (including organic layer) to 45% in the lower subsoil. This change was associated with a decrease in specific root area and root N content and an increase in mean root diameter with soil depth, while root tissue density did not change consistently. We conclude that soil depth (which acts through soil physical and chemical drivers) influences the fine root branching patterns of beech much more than soil chemical variation across soil types. To examine whether changes in root function are indeed triggered by branching events or result from root ageing and diameter growth, spatially explicit root physiological and anatomical studies across root orders are needed.</p>","PeriodicalId":19473,"journal":{"name":"Oecologia","volume":" ","pages":"121-133"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144161/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecologia","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00442-024-05558-3","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fine roots are multifunctional organs that may change function with ageing or root branching events from primarily absorptive to resource transport and storage functions. It is not well understood, how fine root branching patterns and related root functional differentiation along the longitudinal root axis change with soil chemical and physical conditions. We examined the variation in fine root branching patterns (the relative frequency of 1st to 4th root orders) and root morphological and chemical traits of European beech trees with soil depth (topsoil vs. subsoil) and soil chemistry (five sites with acid to neutral/alkaline bedrock). Bedrock type and related soil chemistry had an only minor influence on branching patterns: base-poor, infertile sites showed no higher fine root branching than base-rich sites. The contribution of 1st-order root segments to total fine root length decreased at all sites from about 60% in the topsoil (including organic layer) to 45% in the lower subsoil. This change was associated with a decrease in specific root area and root N content and an increase in mean root diameter with soil depth, while root tissue density did not change consistently. We conclude that soil depth (which acts through soil physical and chemical drivers) influences the fine root branching patterns of beech much more than soil chemical variation across soil types. To examine whether changes in root function are indeed triggered by branching events or result from root ageing and diameter growth, spatially explicit root physiological and anatomical studies across root orders are needed.
期刊介绍:
Oecologia publishes innovative ecological research of international interest. We seek reviews, advances in methodology, and original contributions, emphasizing the following areas:
Population ecology, Plant-microbe-animal interactions, Ecosystem ecology, Community ecology, Global change ecology, Conservation ecology,
Behavioral ecology and Physiological Ecology.
In general, studies that are purely descriptive, mathematical, documentary, and/or natural history will not be considered.