The Role of Nanotechnology in Understanding the Pathophysiology of Traumatic Brain Injury.

Saranya Selvaraj, Laksiri Weerasinghe
{"title":"The Role of Nanotechnology in Understanding the Pathophysiology of Traumatic Brain Injury.","authors":"Saranya Selvaraj, Laksiri Weerasinghe","doi":"10.2174/0118715249291999240418112531","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, traumatic brain injury (TBI) has been a growing disorder due to frequent brain dysfunction. The Glasgow Coma Scale expresses TBI as classified as having mild, moderate, or severe brain effects, according to the effects on the brain. Brain receptors undergo various modifications in their pathology through chemical synaptic pathways, leading to depression, Alzheimer's, and Parkinson's disease. These brain disorders can be controlled using central receptors such as dopamine, glutamate, and γ-aminobutyric acid, which are clearly explained in this review. Furthermore, there are many complications in TBI's clinical trials and diagnostics, leading to insignificant treatment, causing permanent neuro-damage, physical disability, and even death. Bio-screening and conventional molecular-based therapies are inappropriate due to poor preclinical testing and delayed recovery. Hence, modern nanotechnology utilizing nanopulsed laser therapy and advanced nanoparticle insertion will be suitable for TBI's diagnostics and treatment. In recent days, nanotechnology has an important role in TBI control and provides a higher success rate than conventional therapies. This review highlights the pathophysiology of TBI by comprising the drawbacks of conventional techniques and supports suitable modern alternates for treating TBI.</p>","PeriodicalId":93930,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central nervous system agents in medicinal chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715249291999240418112531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, traumatic brain injury (TBI) has been a growing disorder due to frequent brain dysfunction. The Glasgow Coma Scale expresses TBI as classified as having mild, moderate, or severe brain effects, according to the effects on the brain. Brain receptors undergo various modifications in their pathology through chemical synaptic pathways, leading to depression, Alzheimer's, and Parkinson's disease. These brain disorders can be controlled using central receptors such as dopamine, glutamate, and γ-aminobutyric acid, which are clearly explained in this review. Furthermore, there are many complications in TBI's clinical trials and diagnostics, leading to insignificant treatment, causing permanent neuro-damage, physical disability, and even death. Bio-screening and conventional molecular-based therapies are inappropriate due to poor preclinical testing and delayed recovery. Hence, modern nanotechnology utilizing nanopulsed laser therapy and advanced nanoparticle insertion will be suitable for TBI's diagnostics and treatment. In recent days, nanotechnology has an important role in TBI control and provides a higher success rate than conventional therapies. This review highlights the pathophysiology of TBI by comprising the drawbacks of conventional techniques and supports suitable modern alternates for treating TBI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米技术在了解创伤性脑损伤病理生理学方面的作用。
最近,创伤性脑损伤(TBI)因频繁出现脑功能障碍而成为一种日益严重的疾病。格拉斯哥昏迷量表将创伤性脑损伤根据对大脑的影响分为轻度、中度和重度。大脑受体通过化学突触途径发生各种病理改变,导致抑郁症、老年痴呆症和帕金森病。这些脑部疾病可以通过多巴胺、谷氨酸和γ-氨基丁酸等中枢受体来控制,本综述对此有清楚的解释。此外,创伤性脑损伤的临床试验和诊断存在许多并发症,导致治疗效果不显著,造成永久性神经损伤、身体残疾甚至死亡。生物筛选和传统的分子疗法因临床前试验不完善和康复延迟而不合适。因此,利用纳米脉冲激光疗法和先进的纳米粒子植入的现代纳米技术将适用于创伤性脑损伤的诊断和治疗。近年来,纳米技术在创伤性脑损伤的控制中发挥了重要作用,并提供了比传统疗法更高的成功率。这篇综述强调了创伤性脑损伤的病理生理学,包括传统技术的缺点,并支持治疗创伤性脑损伤的合适的现代替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Antidepressant Potential of Hispidulin Present in S. barbata D. Don: Mechanistic Insights through Neurochemical and Behavioral Assessments. Identification of Phytoconstituents from Natural Product Database as SIRT2 Inhibitors for Potential Role in Alzheimer's Disease: An In-Silico Screening. Thiazolidine-4-one Analogues: Synthesis, In-Silico Molecular Modeling, and In-vivo Estimation for Anticonvulsant Potential. Novel Emerging Targets Identification in Reducing Risk of Alzheimer's Disease. A Brief Review on Caenorhabditis elegans Role in Modelling Neurodegenerative Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1