MyoD1 promotes the transcription of BIK and plays an apoptosis-promoting role in the development of gastric cancer.

IF 3.4 3区 生物学 Q3 CELL BIOLOGY Cell Cycle Pub Date : 2024-03-01 Epub Date: 2024-05-03 DOI:10.1080/15384101.2024.2348344
Fei Wu, Jinyuan Zhang, Qiuyu Jiang, Qian Li, Fang Li, Jia Li, Wei Lv, Xiaofei Wang, Yannan Qin, Chen Huang, Shuqun Zhang
{"title":"MyoD1 promotes the transcription of BIK and plays an apoptosis-promoting role in the development of gastric cancer.","authors":"Fei Wu, Jinyuan Zhang, Qiuyu Jiang, Qian Li, Fang Li, Jia Li, Wei Lv, Xiaofei Wang, Yannan Qin, Chen Huang, Shuqun Zhang","doi":"10.1080/15384101.2024.2348344","DOIUrl":null,"url":null,"abstract":"<p><p>Myogenic differentiation (MyoD) 1, which is known as a pivotal transcription factor during myogenesis, has been proven dysregulated in several cancers. However, litter is known about the precise role and downstream genes of MyoD1 in gastric cancer (GC) cells. Here, we report that MyoD1 is lowly expressed in primary GC tissues and cells. In our experiments, overexpression of MyoD1 inhibited cell proliferation. Downstream genes of MyoD1 regulation were investigated using RNA-Seq. As a result, 138 up-regulated genes and 20 down-regulated genes and 27 up-regulated lncRNAs and 20 down-regulated lncRNAs were identified in MyoD1 overexpressed MKN-45 cells, which participated in epithelial cell signaling in Helicobacter pylori infection, glycosaminoglycan biosynthesis (keratan sulfate), notch signaling pathway, and others. Among these genes, BIK was directly regulated by MyoD1 in GC cells and inhibited cancer cell proliferation. The BIK knockdown rescued the effects of MyoD1 overexpression on GC cells. In conclusion, MyoD1 inhibited cell proliferation via 158 genes and 47 lncRNAs downstream directly or indirectly that participated in multiple signaling pathways in GC, and among these, MyoD1 promotes BIK transcription by binding to its promoter, then promotes BIK-Bcl2-caspase 3 axis and regulates GC cell apoptosis.</p>","PeriodicalId":9686,"journal":{"name":"Cell Cycle","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135814/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Cycle","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15384101.2024.2348344","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Myogenic differentiation (MyoD) 1, which is known as a pivotal transcription factor during myogenesis, has been proven dysregulated in several cancers. However, litter is known about the precise role and downstream genes of MyoD1 in gastric cancer (GC) cells. Here, we report that MyoD1 is lowly expressed in primary GC tissues and cells. In our experiments, overexpression of MyoD1 inhibited cell proliferation. Downstream genes of MyoD1 regulation were investigated using RNA-Seq. As a result, 138 up-regulated genes and 20 down-regulated genes and 27 up-regulated lncRNAs and 20 down-regulated lncRNAs were identified in MyoD1 overexpressed MKN-45 cells, which participated in epithelial cell signaling in Helicobacter pylori infection, glycosaminoglycan biosynthesis (keratan sulfate), notch signaling pathway, and others. Among these genes, BIK was directly regulated by MyoD1 in GC cells and inhibited cancer cell proliferation. The BIK knockdown rescued the effects of MyoD1 overexpression on GC cells. In conclusion, MyoD1 inhibited cell proliferation via 158 genes and 47 lncRNAs downstream directly or indirectly that participated in multiple signaling pathways in GC, and among these, MyoD1 promotes BIK transcription by binding to its promoter, then promotes BIK-Bcl2-caspase 3 axis and regulates GC cell apoptosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MyoD1 可促进 BIK 的转录,并在胃癌的发展过程中发挥促进凋亡的作用。
肌细胞分化(MyoD)1是肌细胞生成过程中的关键转录因子,已被证实在多种癌症中出现失调。然而,人们对 MyoD1 在胃癌(GC)细胞中的确切作用和下游基因知之甚少。在此,我们报告了 MyoD1 在原发性 GC 组织和细胞中的低表达情况。在我们的实验中,MyoD1的过表达抑制了细胞的增殖。我们使用 RNA-Seq 对 MyoD1 调控的下游基因进行了研究。结果发现,在MyoD1过表达的MKN-45细胞中,有138个上调基因、20个下调基因、27个上调lncRNA和20个下调lncRNA,它们参与了幽门螺杆菌感染、糖胺聚糖生物合成(硫酸角蛋白)、notch信号通路等上皮细胞信号转导。在这些基因中,BIK在GC细胞中直接受MyoD1调控,并抑制癌细胞增殖。敲除 BIK 可以缓解 MyoD1 过表达对 GC 细胞的影响。总之,MyoD1通过下游的158个基因和47个lncRNA直接或间接地抑制细胞增殖,这些基因和lncRNA参与了GC细胞的多种信号通路,其中MyoD1通过与其启动子结合促进BIK转录,然后促进BIK-Bcl2-caspase 3轴,调控GC细胞凋亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Cycle
Cell Cycle 生物-细胞生物学
CiteScore
7.70
自引率
2.30%
发文量
281
审稿时长
1 months
期刊介绍: Cell Cycle is a bi-weekly peer-reviewed journal of high priority research from all areas of cell biology. Cell Cycle covers all topics from yeast to man, from DNA to function, from development to aging, from stem cells to cell senescence, from metabolism to cell death, from cancer to neurobiology, from molecular biology to therapeutics. Our goal is fast publication of outstanding research.
期刊最新文献
Expression of Concern: DDB2 association with PCNA is required for its degradation after UV-induced DNA damage. Autophagy unrelated transcriptional mechanisms of hydroxychloroquine resistance revealed by integrated multi-omics of evolved cancer cells. Cell cycle regulated expression of the WHI7 Start repressor gene. Melatonin protects against defects induced by methoxychlor in porcine oocyte maturation. Enhancing precision in colorectal cancer surgery: development of an LGR5-targeting RSPO1 peptide mimetic as a contrast agent for intraoperative fluorescence molecular imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1