Empirical assessment of the assumptions of ComBat with diffusion tensor imaging.

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Medical Imaging Pub Date : 2024-03-01 Epub Date: 2024-04-17 DOI:10.1117/1.JMI.11.2.024011
Michael E Kim, Chenyu Gao, Leon Y Cai, Qi Yang, Nancy R Newlin, Karthik Ramadass, Angela Jefferson, Derek Archer, Niranjana Shashikumar, Kimberly R Pechman, Katherine A Gifford, Timothy J Hohman, Lori L Beason-Held, Susan M Resnick, Stefan Winzeck, Kurt G Schilling, Panpan Zhang, Daniel Moyer, Bennett A Landman
{"title":"Empirical assessment of the assumptions of ComBat with diffusion tensor imaging.","authors":"Michael E Kim, Chenyu Gao, Leon Y Cai, Qi Yang, Nancy R Newlin, Karthik Ramadass, Angela Jefferson, Derek Archer, Niranjana Shashikumar, Kimberly R Pechman, Katherine A Gifford, Timothy J Hohman, Lori L Beason-Held, Susan M Resnick, Stefan Winzeck, Kurt G Schilling, Panpan Zhang, Daniel Moyer, Bennett A Landman","doi":"10.1117/1.JMI.11.2.024011","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Diffusion tensor imaging (DTI) is a magnetic resonance imaging technique that provides unique information about white matter microstructure in the brain but is susceptible to confounding effects introduced by scanner or acquisition differences. ComBat is a leading approach for addressing these site biases. However, despite its frequent use for harmonization, ComBat's robustness toward site dissimilarities and overall cohort size have not yet been evaluated in terms of DTI.</p><p><strong>Approach: </strong>As a baseline, we match <math><mrow><mi>N</mi><mo>=</mo><mn>358</mn></mrow></math> participants from two sites to create a \"silver standard\" that simulates a cohort for multi-site harmonization. Across sites, we harmonize mean fractional anisotropy and mean diffusivity, calculated using participant DTI data, for the regions of interest defined by the JHU EVE-Type III atlas. We bootstrap 10 iterations at 19 levels of total sample size, 10 levels of sample size imbalance between sites, and 6 levels of mean age difference between sites to quantify (i) <math><mrow><msub><mi>β</mi><mi>AGE</mi></msub></mrow></math>, the linear regression coefficient of the relationship between FA and age; (ii) <math><mrow><msubsup><mrow><mover><mrow><mi>γ</mi></mrow><mrow><mo>^</mo></mrow></mover></mrow><mrow><mi>s</mi><mi>f</mi></mrow><mrow><mo>*</mo></mrow></msubsup></mrow></math>, the ComBat-estimated site-shift; and (iii) <math><mrow><msubsup><mrow><mover><mrow><mi>δ</mi></mrow><mrow><mo>^</mo></mrow></mover></mrow><mrow><mi>s</mi><mi>f</mi></mrow><mrow><mo>*</mo></mrow></msubsup></mrow></math>, the ComBat-estimated site-scaling. We characterize the reliability of ComBat by evaluating the root mean squared error in these three metrics and examine if there is a correlation between the reliability of ComBat and a violation of assumptions.</p><p><strong>Results: </strong>ComBat remains well behaved for <math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>AGE</mi></mrow></msub></mrow></math> when <math><mrow><mi>N</mi><mo>></mo><mn>162</mn></mrow></math> and when the mean age difference is less than 4 years. The assumptions of the ComBat model regarding the normality of residual distributions are not violated as the model becomes unstable.</p><p><strong>Conclusion: </strong>Prior to harmonization of DTI data with ComBat, the input cohort should be examined for size and covariate distributions of each site. Direct assessment of residual distributions is less informative on stability than bootstrap analysis. We caution use ComBat of in situations that do not conform to the above thresholds.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 2","pages":"024011"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11034156/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.2.024011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Diffusion tensor imaging (DTI) is a magnetic resonance imaging technique that provides unique information about white matter microstructure in the brain but is susceptible to confounding effects introduced by scanner or acquisition differences. ComBat is a leading approach for addressing these site biases. However, despite its frequent use for harmonization, ComBat's robustness toward site dissimilarities and overall cohort size have not yet been evaluated in terms of DTI.

Approach: As a baseline, we match N=358 participants from two sites to create a "silver standard" that simulates a cohort for multi-site harmonization. Across sites, we harmonize mean fractional anisotropy and mean diffusivity, calculated using participant DTI data, for the regions of interest defined by the JHU EVE-Type III atlas. We bootstrap 10 iterations at 19 levels of total sample size, 10 levels of sample size imbalance between sites, and 6 levels of mean age difference between sites to quantify (i) βAGE, the linear regression coefficient of the relationship between FA and age; (ii) γ^sf*, the ComBat-estimated site-shift; and (iii) δ^sf*, the ComBat-estimated site-scaling. We characterize the reliability of ComBat by evaluating the root mean squared error in these three metrics and examine if there is a correlation between the reliability of ComBat and a violation of assumptions.

Results: ComBat remains well behaved for βAGE when N>162 and when the mean age difference is less than 4 years. The assumptions of the ComBat model regarding the normality of residual distributions are not violated as the model becomes unstable.

Conclusion: Prior to harmonization of DTI data with ComBat, the input cohort should be examined for size and covariate distributions of each site. Direct assessment of residual distributions is less informative on stability than bootstrap analysis. We caution use ComBat of in situations that do not conform to the above thresholds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用扩散张量成像对 ComBat 的假设进行经验评估。
目的:弥散张量成像(DTI)是一种磁共振成像技术,可提供有关大脑白质微观结构的独特信息,但容易受到扫描仪或采集差异的影响。ComBat 是解决这些部位偏差的主要方法。然而,尽管 ComBat 经常被用于协调,但它对部位差异和整体队列规模的稳健性尚未在 DTI 方面进行评估:作为基线,我们匹配了来自两个地点的 N=358 名参与者,以创建一个 "银标准",模拟多地点协调的队列。在各个研究点之间,我们对使用参与者 DTI 数据计算的平均分数各向异性和平均扩散率进行协调,这些数据由 JHU EVE-Type III 地图集定义。我们在 19 个样本总量水平、10 个站点间样本量不平衡水平和 6 个站点间平均年龄差异水平下进行了 10 次自举迭代,以量化 (i) βAGE,即 FA 与年龄之间关系的线性回归系数;(ii) γ^sf*,即 ComBat 估算的站点偏移;以及 (iii) δ^sf*,即 ComBat 估算的站点缩放。我们通过评估这三个指标的均方根误差来描述 ComBat 的可靠性,并研究 ComBat 的可靠性与违反假设之间是否存在相关性:结果:当 N>162 且平均年龄差小于 4 岁时,ComBat 对 βAGE 仍表现良好。ComBat 模型关于残差分布正态性的假设没有被违反,因为模型变得不稳定:结论:在将 DTI 数据与 ComBat 协调之前,应检查输入队列中每个部位的大小和协变量分布。直接评估残差分布不如引导分析更能说明问题。我们建议在不符合上述阈值的情况下慎用 ComBat。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
期刊最新文献
In-silico study of the impact of system design parameters on microcalcification detection in wide-angle digital breast tomosynthesis. Estimation of the absorbed dose in simultaneous digital breast tomosynthesis and mechanical imaging. Breathing motion compensation in chest tomosynthesis: evaluation of the effect on image quality and presence of artifacts. Automated assessment of task-based performance of digital mammography and tomosynthesis systems using an anthropomorphic breast phantom and deep learning-based scoring. Our journey toward implementation of digital breast tomosynthesis in breast cancer screening: the Malmö Breast Tomosynthesis Screening Project.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1