Pectolinarigenin ameliorated airway inflammation and airway remodeling to exhibit antitussive effect.

IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Korean Journal of Physiology & Pharmacology Pub Date : 2024-05-01 DOI:10.4196/kjpp.2024.28.3.229
Quan He, Weihua Liu, Xiaomei Ma, Hongxiu Li, Weiqi Feng, Xuzhi Lu, Ying Li, Zi Chen
{"title":"Pectolinarigenin ameliorated airway inflammation and airway remodeling to exhibit antitussive effect.","authors":"Quan He, Weihua Liu, Xiaomei Ma, Hongxiu Li, Weiqi Feng, Xuzhi Lu, Ying Li, Zi Chen","doi":"10.4196/kjpp.2024.28.3.229","DOIUrl":null,"url":null,"abstract":"<p><p>Cough is a common symptom of several respiratory diseases. However, frequent coughing from acute to chronic often causes great pain to patients. It may turn into cough variant asthma, which seriously affects people's quality of life. For cough treatment, it is dominated by over-the-counter antitussive drugs, such as asmeton, but most currently available antitussive drugs have serious side effects. Thus, there is a great need for the development of new drugs with potent cough suppressant. BALB/c mice were used to construct mice model with cough to investigate the pharmacological effects of pectolinarigenin (PEC). Hematoxylin-eosin and Masson staining were used to assess lung injury and airway remodeling, and ELISA was used to assess the level of inflammatory factor release. In addition, inflammatory cell counts were measured to assess airway inflammation. Airway hyperresponsiveness assay was used to assess respiratory resistance in mice. Finally, we used Western blotting to explore the potential mechanisms of PEC. We found that PEC could alleviate lung tissue injury and reduce the release of inflammatory factors, inhibit of cough frequency and airway wall collagen deposition in mice model with cough. Meanwhile, PEC inhibited the Ras/ERK/c-Fos pathway to exhibit antitussive effect. Therefore, PEC may be a potential drug for cough suppression.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 3","pages":"229-237"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058546/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Physiology & Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4196/kjpp.2024.28.3.229","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Cough is a common symptom of several respiratory diseases. However, frequent coughing from acute to chronic often causes great pain to patients. It may turn into cough variant asthma, which seriously affects people's quality of life. For cough treatment, it is dominated by over-the-counter antitussive drugs, such as asmeton, but most currently available antitussive drugs have serious side effects. Thus, there is a great need for the development of new drugs with potent cough suppressant. BALB/c mice were used to construct mice model with cough to investigate the pharmacological effects of pectolinarigenin (PEC). Hematoxylin-eosin and Masson staining were used to assess lung injury and airway remodeling, and ELISA was used to assess the level of inflammatory factor release. In addition, inflammatory cell counts were measured to assess airway inflammation. Airway hyperresponsiveness assay was used to assess respiratory resistance in mice. Finally, we used Western blotting to explore the potential mechanisms of PEC. We found that PEC could alleviate lung tissue injury and reduce the release of inflammatory factors, inhibit of cough frequency and airway wall collagen deposition in mice model with cough. Meanwhile, PEC inhibited the Ras/ERK/c-Fos pathway to exhibit antitussive effect. Therefore, PEC may be a potential drug for cough suppression.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
果胶苷元可改善气道炎症和气道重塑,从而发挥止咳作用。
咳嗽是多种呼吸道疾病的常见症状。然而,从急性到慢性的频繁咳嗽往往会给患者带来极大的痛苦。它可能演变成咳嗽变异性哮喘,严重影响人们的生活质量。对于咳嗽的治疗,目前主要采用非处方止咳药,如阿斯美通,但目前大多数止咳药都有严重的副作用。因此,亟需开发具有强效止咳作用的新药。为了研究果胶苷元(PEC)的药理作用,我们利用 BALB/c 小鼠建立了咳嗽小鼠模型。血栓素-伊红和马森染色用于评估肺损伤和气道重塑,ELISA用于评估炎症因子的释放水平。此外,还测量了炎性细胞计数,以评估气道炎症。气道高反应性试验用于评估小鼠的呼吸阻力。最后,我们使用 Western 印迹法探讨了 PEC 的潜在机制。我们发现,PEC 能减轻咳嗽小鼠肺组织损伤,减少炎症因子的释放,抑制咳嗽频率和气道壁胶原沉积。同时,PEC还能抑制Ras/ERK/c-Fos通路,从而发挥镇咳作用。因此,PEC 可能是一种潜在的止咳药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Korean Journal of Physiology & Pharmacology
Korean Journal of Physiology & Pharmacology PHARMACOLOGY & PHARMACY-PHYSIOLOGY
CiteScore
3.20
自引率
5.00%
发文量
53
审稿时长
6-12 weeks
期刊介绍: The Korean Journal of Physiology & Pharmacology (Korean J. Physiol. Pharmacol., KJPP) is the official journal of both the Korean Physiological Society (KPS) and the Korean Society of Pharmacology (KSP). The journal launched in 1997 and is published bi-monthly in English. KJPP publishes original, peer-reviewed, scientific research-based articles that report successful advances in physiology and pharmacology. KJPP welcomes the submission of all original research articles in the field of physiology and pharmacology, especially the new and innovative findings. The scope of researches includes the action mechanism, pharmacological effect, utilization, and interaction of chemicals with biological system as well as the development of new drug targets. Theoretical articles that use computational models for further understanding of the physiological or pharmacological processes are also welcomed. Investigative translational research articles on human disease with an emphasis on physiology or pharmacology are also invited. KJPP does not publish work on the actions of crude biological extracts of either unknown chemical composition (e.g. unpurified and unvalidated) or unknown concentration. Reviews are normally commissioned, but consideration will be given to unsolicited contributions. All papers accepted for publication in KJPP will appear simultaneously in the printed Journal and online.
期刊最新文献
Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis. Haloperidol, a typical antipsychotic, inhibits 5-HT3 receptormediated currents in NCB-20 cells: a whole-cell patch-clamp study. Lactobacillus johnsonii JERA01 upregulates the production of Th1 cytokines and modulates dendritic cells-mediated immune response. Anti-inflammatory effects of LCB 03-0110 on human corneal epithelial and murine T helper 17 cells. Astragalus polysaccharide ameliorates diabetic retinopathy by inhibiting the SHH-Gli1-AQP1 signaling pathway in streptozotocin-induced type 2 diabetic rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1