[Simulation model of tumor-treating fields].

Liping Qin, Xu Xie, Minmin Wang, Mingwei Ma, Yun Pan, Guangdi Chen, Shaomin Zhang
{"title":"[Simulation model of tumor-treating fields].","authors":"Liping Qin, Xu Xie, Minmin Wang, Mingwei Ma, Yun Pan, Guangdi Chen, Shaomin Zhang","doi":"10.7507/1001-5515.202306074","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor-treating fields (TTFields) is a novel treatment modality for malignant solid tumors, often employing electric field simulations to analyze the distribution of electric fields on the tumor under different parameters of TTFields. Due to the present difficulties and high costs associated with reproducing or implementing the simulation model construction techniques, this study used readily available open-source software tools to construct a highly accurate, easily implementable finite element simulation model for TTFields. The accuracy of the model is at a level of 1 mm <sup>3</sup>. Using this simulation model, the study carried out analyses of different factors, such as tissue electrical parameters and electrode configurations. The results show that factors influncing the distribution of the internal electric field of the tumor include changes in scalp and skull conductivity (with a maximum variation of 21.0% in the treatment field of the tumor), changes in tumor conductivity (with a maximum variation of 157.8% in the treatment field of the tumor), and different electrode positions and combinations (with a maximum variation of 74.2% in the treatment field of the tumor). In summary, the results of this study validate the feasibility and effectiveness of the proposed modeling method, which can provide an important reference for future simulation analyses of TTFields and clinical applications.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 2","pages":"360-367"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058494/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202306074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Tumor-treating fields (TTFields) is a novel treatment modality for malignant solid tumors, often employing electric field simulations to analyze the distribution of electric fields on the tumor under different parameters of TTFields. Due to the present difficulties and high costs associated with reproducing or implementing the simulation model construction techniques, this study used readily available open-source software tools to construct a highly accurate, easily implementable finite element simulation model for TTFields. The accuracy of the model is at a level of 1 mm 3. Using this simulation model, the study carried out analyses of different factors, such as tissue electrical parameters and electrode configurations. The results show that factors influncing the distribution of the internal electric field of the tumor include changes in scalp and skull conductivity (with a maximum variation of 21.0% in the treatment field of the tumor), changes in tumor conductivity (with a maximum variation of 157.8% in the treatment field of the tumor), and different electrode positions and combinations (with a maximum variation of 74.2% in the treatment field of the tumor). In summary, the results of this study validate the feasibility and effectiveness of the proposed modeling method, which can provide an important reference for future simulation analyses of TTFields and clinical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[肿瘤治疗场模拟模型]。
肿瘤治疗场(TTFields)是一种新型的恶性实体肿瘤治疗模式,通常采用电场模拟来分析不同参数的TTFields下肿瘤上的电场分布。由于目前复制或实施仿真模型构建技术的难度大、成本高,本研究利用现成的开源软件工具构建了一个高精度、易实施的 TTFields 有限元仿真模型。利用该仿真模型,研究人员对组织电参数和电极配置等不同因素进行了分析。结果表明,影响肿瘤内部电场分布的因素包括头皮和头骨电导率的变化(在肿瘤治疗场中最大变化为 21.0%)、肿瘤电导率的变化(在肿瘤治疗场中最大变化为 157.8%)以及不同电极位置和组合(在肿瘤治疗场中最大变化为 74.2%)。总之,本研究的结果验证了所提出的建模方法的可行性和有效性,可为今后 TTFields 的模拟分析和临床应用提供重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
期刊最新文献
[A lightweight convolutional neural network for myositis classification from muscle ultrasound images]. [A review on depth perception techniques in organoid images]. [Advances in nanostructured surfaces for enhanced mechano-bactericidal applications]. [Advances in the diagnosis of prostate cancer based on image fusion]. [Analysis of nerve excitability in the dentate gyrus of the hippocampus in cerebral ischaemia-reperfusion mice].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1