Real time changes in the expression of eicosanoid synthesizing enzymes during inflammation

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Prostaglandins & other lipid mediators Pub Date : 2024-04-26 DOI:10.1016/j.prostaglandins.2024.106839
Hannah C. Huff , Justin S. Kim , Abhishek Ojha , Saurabh Sinha , Aditi Das
{"title":"Real time changes in the expression of eicosanoid synthesizing enzymes during inflammation","authors":"Hannah C. Huff ,&nbsp;Justin S. Kim ,&nbsp;Abhishek Ojha ,&nbsp;Saurabh Sinha ,&nbsp;Aditi Das","doi":"10.1016/j.prostaglandins.2024.106839","DOIUrl":null,"url":null,"abstract":"<div><p>Immune responses during inflammation involve complex, well-coordinated lipid signaling pathways. Eicosanoids are a class of lipid signaling molecules derived from polyunsaturated fatty acids such as arachidonic acid and constitute a major network that controls inflammation and its subsequent resolution. Arachidonic acid is metabolized by enzymes in three different pathways to form a variety of lipid metabolites that can be either pro- or anti-inflammatory. Therefore, an understanding of the time-dependent gene expression, lipid metabolite profiles and cytokine profiles during the initial inflammatory response is necessary, as it will allow for the design of time-dependent therapeutics. Herein, we investigate the multi-level regulation of this process. After stimulating RAW 264.7 cells, a mouse-derived macrophage cell line commonly used to examine inflammatory responses, we examine the gene expression of 44 relevant lipid metabolizing enzymes from the different eicosanoid synthesizing classes. We also measure the formation of lipid metabolites and production of cytokines at selected time points. Results reveal a dynamic relationship between the time-course of inflammation dependent gene expression of the three eicosanoid synthesizing enzymes.</p></div>","PeriodicalId":21161,"journal":{"name":"Prostaglandins & other lipid mediators","volume":"174 ","pages":"Article 106839"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins & other lipid mediators","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1098882324000339","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Immune responses during inflammation involve complex, well-coordinated lipid signaling pathways. Eicosanoids are a class of lipid signaling molecules derived from polyunsaturated fatty acids such as arachidonic acid and constitute a major network that controls inflammation and its subsequent resolution. Arachidonic acid is metabolized by enzymes in three different pathways to form a variety of lipid metabolites that can be either pro- or anti-inflammatory. Therefore, an understanding of the time-dependent gene expression, lipid metabolite profiles and cytokine profiles during the initial inflammatory response is necessary, as it will allow for the design of time-dependent therapeutics. Herein, we investigate the multi-level regulation of this process. After stimulating RAW 264.7 cells, a mouse-derived macrophage cell line commonly used to examine inflammatory responses, we examine the gene expression of 44 relevant lipid metabolizing enzymes from the different eicosanoid synthesizing classes. We also measure the formation of lipid metabolites and production of cytokines at selected time points. Results reveal a dynamic relationship between the time-course of inflammation dependent gene expression of the three eicosanoid synthesizing enzymes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
炎症期间类二十酸合成酶表达的实时变化。
炎症期间的免疫反应涉及复杂、协调良好的脂质信号通路。二十烷酸是一类由花生四烯酸等多不饱和脂肪酸衍生的脂质信号分子,是控制炎症及其后续缓解的主要网络。花生四烯酸通过三种不同途径的酶代谢形成多种脂质代谢物,这些代谢物既可以促炎,也可以抗炎。因此,有必要了解初始炎症反应期间随时间变化的基因表达、脂质代谢物特征和细胞因子特征,以便设计随时间变化的治疗方法。在此,我们研究了这一过程的多级调控。RAW 264.7 细胞是一种小鼠衍生的巨噬细胞系,常用来研究炎症反应。我们还在选定的时间点测量了脂质代谢物的形成和细胞因子的产生。结果显示,炎症的时间过程与三种类二十酸合成酶的基因表达之间存在动态关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Prostaglandins & other lipid mediators
Prostaglandins & other lipid mediators 生物-生化与分子生物学
CiteScore
5.80
自引率
3.40%
发文量
49
审稿时长
2 months
期刊介绍: Prostaglandins & Other Lipid Mediators is the original and foremost journal dealing with prostaglandins and related lipid mediator substances. It includes basic and clinical studies related to the pharmacology, physiology, pathology and biochemistry of lipid mediators. Prostaglandins & Other Lipid Mediators invites reports of original research, mini-reviews, reviews, and methods articles in the basic and clinical aspects of all areas of lipid mediator research: cell biology, developmental biology, genetics, molecular biology, chemistry, biochemistry, physiology, pharmacology, endocrinology, biology, the medical sciences, and epidemiology. Prostaglandins & Other Lipid Mediators also accepts proposals for special issue topics. The Editors will make every effort to advise authors of the decision on the submitted manuscript within 3-4 weeks of receipt.
期刊最新文献
Changes in the serum phospholipid profile of neuroborreliosis patients, foresters, and patients subjected to long-term therapy according to ILADS methods. Epoxyeicosatrienoic acids (EETs): A novel class of second messengers of hormonal functional responses. Beta-sitosterol regulates PTGS1 to inhibit gastric cancer cell proliferation and angiogenesis. Lutein, a non-provitamin A carotenoid, reduces cisplatin-induced cardiotoxicity. An editorial farewell.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1