Liangxian Li, Zhiheng Huang, Mingli Wu, Xia Li, Bo Xiao, Dong Yao, Biwen Mo
{"title":"Trehalose improves the movement ability of Aβ<sub>arc</sub><i>Drosophila</i> by restoring the damaged mitochondria.","authors":"Liangxian Li, Zhiheng Huang, Mingli Wu, Xia Li, Bo Xiao, Dong Yao, Biwen Mo","doi":"10.1515/tnsci-2022-0338","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The deposition of Aβ<sub>42</sub> has been regarded as one of the important pathological features of Alzheimer's disease (AD). However, drug development for Aβ<sub>42</sub> toxicity has been progressed slowly.</p><p><strong>Objective: </strong>Our aim was to introduce the effect and related mechanism of trehalose on an Aβ<sub>arc</sub> (arctic mutant Aβ<sub>42</sub>) <i>Drosophila</i> AD model.</p><p><strong>Methods: </strong>The human Aβ<sub>arc</sub> was expressed in <i>Drosophila</i> to construct the AD model. Trehalose was added to the culture vial. The movement ability was determined by detecting climbing ability and flight ability. Enzyme-linked immunosorbent assay was used to detect the levels of Aβ<sub>arc</sub>, ATP, and lactate. Electron microscopy assay, mitochondrial membrane potential assay, and mitochondrial respiration assay were used to assess the mitochondrial structure and function.</p><p><strong>Results: </strong>Trehalose strongly improved the movement ability of Aβ<sub>arc</sub> <i>Drosophila</i> in a concentration gradient-dependent manner. Furthermore, trehalose increased the content of ATP and decreased the content of Aβ<sub>arc</sub> and lactate both in the brain and thorax of Aβ<sub>arc</sub> <i>Drosophila</i>. More importantly, the mitochondrial structure and function were greatly improved by trehalose treatment in Aβ<sub>arc</sub> <i>Drosophila</i>.</p><p><strong>Conclusion: </strong>Trehalose improves movement ability at least partly by reducing the Aβ<sub>arc</sub> level and restoring the mitochondrial structure and function in Aβ<sub>arc</sub> <i>Drosophila</i>.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"15 1","pages":"20220338"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017185/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/tnsci-2022-0338","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The deposition of Aβ42 has been regarded as one of the important pathological features of Alzheimer's disease (AD). However, drug development for Aβ42 toxicity has been progressed slowly.
Objective: Our aim was to introduce the effect and related mechanism of trehalose on an Aβarc (arctic mutant Aβ42) Drosophila AD model.
Methods: The human Aβarc was expressed in Drosophila to construct the AD model. Trehalose was added to the culture vial. The movement ability was determined by detecting climbing ability and flight ability. Enzyme-linked immunosorbent assay was used to detect the levels of Aβarc, ATP, and lactate. Electron microscopy assay, mitochondrial membrane potential assay, and mitochondrial respiration assay were used to assess the mitochondrial structure and function.
Results: Trehalose strongly improved the movement ability of AβarcDrosophila in a concentration gradient-dependent manner. Furthermore, trehalose increased the content of ATP and decreased the content of Aβarc and lactate both in the brain and thorax of AβarcDrosophila. More importantly, the mitochondrial structure and function were greatly improved by trehalose treatment in AβarcDrosophila.
Conclusion: Trehalose improves movement ability at least partly by reducing the Aβarc level and restoring the mitochondrial structure and function in AβarcDrosophila.
期刊介绍:
Translational Neuroscience provides a closer interaction between basic and clinical neuroscientists to expand understanding of brain structure, function and disease, and translate this knowledge into clinical applications and novel therapies of nervous system disorders.