Development and assessment of nano drug delivery systems for combined delivery of rosuvastatin and ezetimibe.

IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Korean Journal of Physiology & Pharmacology Pub Date : 2024-05-01 DOI:10.4196/kjpp.2024.28.3.275
Mohamed Ali Metwally, El-Yamani Ibrahim El-Zawahry, Maher Amer Ali, Diaa Farrag Ibrahim, Shereen Ahmed Sabry, Omnia Mohamed Sarhan
{"title":"Development and assessment of nano drug delivery systems for combined delivery of rosuvastatin and ezetimibe.","authors":"Mohamed Ali Metwally, El-Yamani Ibrahim El-Zawahry, Maher Amer Ali, Diaa Farrag Ibrahim, Shereen Ahmed Sabry, Omnia Mohamed Sarhan","doi":"10.4196/kjpp.2024.28.3.275","DOIUrl":null,"url":null,"abstract":"<p><p>Worldwide, cardiovascular disease is the main cause of death, which accordingly increased by hyperlipidemia. Hyperlipidemia therapy can include lifestyle changes and medications to control cholesterol levels. Statins are the medications of the first choice for dealing with lipid abnormalities. Rosuvastatin founds to control high lipid levels by hindering liver production of cholesterol and to achieve the targeted levels of low-density lipoprotein cholesterol, another lipid lowering agents named ezetimibe may be used as an added therapy. Both rosuvastatin and ezetimibe have low bioavailability which will stand as barrier to decrease cholesterol levels, because of such depictions, formulations of this combined therapy in nanotechnology will be of a great assistance. Our study demonstrated preparations of nanoparticles of this combined therapy, showing their physical characterizations, and examined their behavior in laboratory conditions and vivo habitation. The mean particle size was uniform, polydispersity index and zeta potential of formulations were found to be in the ranges of (0.181-0.72) and (-13.4 to -6.24), respectively. Acceptable limits of entrapment efficiency were affirmed with appearance of spherical and uniform nanoparticles. In vitro testing showed a sustained release of drug exceeded 90% over 24 h. In vivo study revealed an enhanced dissolution and bioavailability from loaded nanoparticles, which was evidenced by calculated pharmacokinetic parameters using triton for hyperlipidemia induction. Stability studies were performed and assured that the formulations are kept the same up to one month. Therefore, nano formulations is a suitable transporter for combined therapy of rosuvastatin and ezetimibe with improvement in their dissolution and bioavailability.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 3","pages":"275-284"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058542/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Physiology & Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4196/kjpp.2024.28.3.275","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Worldwide, cardiovascular disease is the main cause of death, which accordingly increased by hyperlipidemia. Hyperlipidemia therapy can include lifestyle changes and medications to control cholesterol levels. Statins are the medications of the first choice for dealing with lipid abnormalities. Rosuvastatin founds to control high lipid levels by hindering liver production of cholesterol and to achieve the targeted levels of low-density lipoprotein cholesterol, another lipid lowering agents named ezetimibe may be used as an added therapy. Both rosuvastatin and ezetimibe have low bioavailability which will stand as barrier to decrease cholesterol levels, because of such depictions, formulations of this combined therapy in nanotechnology will be of a great assistance. Our study demonstrated preparations of nanoparticles of this combined therapy, showing their physical characterizations, and examined their behavior in laboratory conditions and vivo habitation. The mean particle size was uniform, polydispersity index and zeta potential of formulations were found to be in the ranges of (0.181-0.72) and (-13.4 to -6.24), respectively. Acceptable limits of entrapment efficiency were affirmed with appearance of spherical and uniform nanoparticles. In vitro testing showed a sustained release of drug exceeded 90% over 24 h. In vivo study revealed an enhanced dissolution and bioavailability from loaded nanoparticles, which was evidenced by calculated pharmacokinetic parameters using triton for hyperlipidemia induction. Stability studies were performed and assured that the formulations are kept the same up to one month. Therefore, nano formulations is a suitable transporter for combined therapy of rosuvastatin and ezetimibe with improvement in their dissolution and bioavailability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发和评估联合给药罗伐他汀和依折麦布的纳米给药系统。
在世界范围内,心血管疾病是导致死亡的主要原因,而高脂血症会相应地增加心血管疾病的发病率。高脂血症治疗包括改变生活方式和控制胆固醇水平的药物。他汀类药物是治疗血脂异常的首选药物。罗苏伐他汀可通过阻碍肝脏产生胆固醇来控制高血脂水平,为了达到低密度脂蛋白胆固醇的目标水平,还可使用另一种名为依折麦布的降脂药作为辅助疗法。罗伐他汀和依折麦布的生物利用度都很低,这将成为降低胆固醇水平的障碍,因此用纳米技术制备这种联合疗法将大有帮助。我们的研究展示了这种联合疗法的纳米颗粒的制备方法,显示了它们的物理特性,并检查了它们在实验室条件下和体内的行为。制剂的平均粒度均匀,多分散指数和 zeta 电位分别在(0.181-0.72)和(-13.4--6.24)之间。由于纳米颗粒呈球形且均匀一致,因此夹带效率达到了可接受的范围。体外测试表明,药物在 24 小时内的持续释放率超过 90%。体内研究表明,载药纳米颗粒的溶解度和生物利用度均有所提高,这一点通过使用三聚氰胺诱导高脂血症的药代动力学参数计算得到了证明。稳定性研究表明,制剂在一个月内保持不变。因此,纳米制剂是罗伐他汀和依泽替米贝联合治疗的合适转运剂,可改善其溶解度和生物利用度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Korean Journal of Physiology & Pharmacology
Korean Journal of Physiology & Pharmacology PHARMACOLOGY & PHARMACY-PHYSIOLOGY
CiteScore
3.20
自引率
5.00%
发文量
53
审稿时长
6-12 weeks
期刊介绍: The Korean Journal of Physiology & Pharmacology (Korean J. Physiol. Pharmacol., KJPP) is the official journal of both the Korean Physiological Society (KPS) and the Korean Society of Pharmacology (KSP). The journal launched in 1997 and is published bi-monthly in English. KJPP publishes original, peer-reviewed, scientific research-based articles that report successful advances in physiology and pharmacology. KJPP welcomes the submission of all original research articles in the field of physiology and pharmacology, especially the new and innovative findings. The scope of researches includes the action mechanism, pharmacological effect, utilization, and interaction of chemicals with biological system as well as the development of new drug targets. Theoretical articles that use computational models for further understanding of the physiological or pharmacological processes are also welcomed. Investigative translational research articles on human disease with an emphasis on physiology or pharmacology are also invited. KJPP does not publish work on the actions of crude biological extracts of either unknown chemical composition (e.g. unpurified and unvalidated) or unknown concentration. Reviews are normally commissioned, but consideration will be given to unsolicited contributions. All papers accepted for publication in KJPP will appear simultaneously in the printed Journal and online.
期刊最新文献
Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis. Haloperidol, a typical antipsychotic, inhibits 5-HT3 receptormediated currents in NCB-20 cells: a whole-cell patch-clamp study. Lactobacillus johnsonii JERA01 upregulates the production of Th1 cytokines and modulates dendritic cells-mediated immune response. Anti-inflammatory effects of LCB 03-0110 on human corneal epithelial and murine T helper 17 cells. Astragalus polysaccharide ameliorates diabetic retinopathy by inhibiting the SHH-Gli1-AQP1 signaling pathway in streptozotocin-induced type 2 diabetic rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1