Q Xu, Y Y Hu, Y Wen, G Y Liu, Z P Yang, C C Zhang, M H Ding, H S Bi
{"title":"[Effect of corneal e-value on myopia control in children and adolescents with orthokeratology].","authors":"Q Xu, Y Y Hu, Y Wen, G Y Liu, Z P Yang, C C Zhang, M H Ding, H S Bi","doi":"10.3760/cma.j.cn112142-20231122-00245","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> To investigate the influence of corneal e-value on the effectiveness of orthokeratology in controlling myopia in children and adolescents. <b>Methods:</b> A retrospective cohort study was conducted, involving the data from 1 563 myopic patients (1 563 eyes) who underwent orthokeratology at the Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine from June 2015 to August 2021 and adhered to lens wear for at least 2 years. The cohort consisted of 737 males and 826 females with an average age of (10.84±2.13) years. Based on corneal e-value parameters obtained from corneal topography, patients were categorized into a low e-value group (<i>n</i>=425) and a high e-value group (<i>n</i>=1 138). Data on gender, age, parental myopia history, and baseline measures such as spherical equivalent (SE), axial length, and corneal e-value were collected. Differences in axial length change and corneal fluorescein staining rates were compared between the two groups at 1 and 2 years after the start of lens wear. A generalized linear mixed model was established with axial length change as the dependent variable to analyze the correlation between axial length change and baseline corneal e-value. <b>Results:</b> The initial age of the 1 563 myopic patients was (10.84±2.13) years, with a baseline SE of (-3.05±1.30) D. After 1 year of lens wear, the axial length change was (0.20±0.19) mm in the low e-value group and (0.24±0.20) mm in the high e-value group. After 2 years, the changes were (0.38±0.25) mm and (0.43±0.27) mm, respectively, with statistically significant differences (all <i>P</i><0.05). The incidence of corneal staining after 1 year of lens wear was 9.2% (39/425) in the low e-value group and 14.1% (160/1 138) in the high e-value group. After 2 years, the rates were 15.8% (67/425) and 21.8% (248/1 138), respectively, with statistically significant differences (all <i>P</i><0.05). After adjusting for parental myopia history, age, SE, and baseline axial length, the baseline corneal e-value was positively correlated with axial length change at 1 and 2 years after lens wear (all <i>P</i><0.05). <b>Conclusions:</b> Corneal e-value is an independent factor influencing the effectiveness of orthokeratology in controlling myopia. A smaller corneal e-value is associated with slower axial length growth after orthokeratology, indicating better control of myopia in treated eyes.</p>","PeriodicalId":39688,"journal":{"name":"中华眼科杂志","volume":"60 4","pages":"330-336"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华眼科杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/cma.j.cn112142-20231122-00245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To investigate the influence of corneal e-value on the effectiveness of orthokeratology in controlling myopia in children and adolescents. Methods: A retrospective cohort study was conducted, involving the data from 1 563 myopic patients (1 563 eyes) who underwent orthokeratology at the Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine from June 2015 to August 2021 and adhered to lens wear for at least 2 years. The cohort consisted of 737 males and 826 females with an average age of (10.84±2.13) years. Based on corneal e-value parameters obtained from corneal topography, patients were categorized into a low e-value group (n=425) and a high e-value group (n=1 138). Data on gender, age, parental myopia history, and baseline measures such as spherical equivalent (SE), axial length, and corneal e-value were collected. Differences in axial length change and corneal fluorescein staining rates were compared between the two groups at 1 and 2 years after the start of lens wear. A generalized linear mixed model was established with axial length change as the dependent variable to analyze the correlation between axial length change and baseline corneal e-value. Results: The initial age of the 1 563 myopic patients was (10.84±2.13) years, with a baseline SE of (-3.05±1.30) D. After 1 year of lens wear, the axial length change was (0.20±0.19) mm in the low e-value group and (0.24±0.20) mm in the high e-value group. After 2 years, the changes were (0.38±0.25) mm and (0.43±0.27) mm, respectively, with statistically significant differences (all P<0.05). The incidence of corneal staining after 1 year of lens wear was 9.2% (39/425) in the low e-value group and 14.1% (160/1 138) in the high e-value group. After 2 years, the rates were 15.8% (67/425) and 21.8% (248/1 138), respectively, with statistically significant differences (all P<0.05). After adjusting for parental myopia history, age, SE, and baseline axial length, the baseline corneal e-value was positively correlated with axial length change at 1 and 2 years after lens wear (all P<0.05). Conclusions: Corneal e-value is an independent factor influencing the effectiveness of orthokeratology in controlling myopia. A smaller corneal e-value is associated with slower axial length growth after orthokeratology, indicating better control of myopia in treated eyes.