[Reconstruction of elasticity modulus distribution base on semi-supervised neural network].

Xiao Zhang, Bo Peng, Rui Wang, Xingyue Wei, Jianwen Luo
{"title":"[Reconstruction of elasticity modulus distribution base on semi-supervised neural network].","authors":"Xiao Zhang, Bo Peng, Rui Wang, Xingyue Wei, Jianwen Luo","doi":"10.7507/1001-5515.202306008","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate reconstruction of tissue elasticity modulus distribution has always been an important challenge in ultrasound elastography. Considering that existing deep learning-based supervised reconstruction methods only use simulated displacement data with random noise in training, which cannot fully provide the complexity and diversity brought by <i>in-vivo</i> ultrasound data, this study introduces the use of displacement data obtained by tracking <i>in-vivo</i> ultrasound radio frequency signals (i.e., real displacement data) during training, employing a semi-supervised approach to enhance the prediction accuracy of the model. Experimental results indicate that in phantom experiments, the semi-supervised model augmented with real displacement data provides more accurate predictions, with mean absolute errors and mean relative errors both around 3%, while the corresponding data for the fully supervised model are around 5%. When processing real displacement data, the area of prediction error of semi-supervised model was less than that of fully supervised model. The findings of this study confirm the effectiveness and practicality of the proposed approach, providing new insights for the application of deep learning methods in the reconstruction of elastic distribution from <i>in-vivo</i> ultrasound data.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 2","pages":"262-271"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058507/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202306008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate reconstruction of tissue elasticity modulus distribution has always been an important challenge in ultrasound elastography. Considering that existing deep learning-based supervised reconstruction methods only use simulated displacement data with random noise in training, which cannot fully provide the complexity and diversity brought by in-vivo ultrasound data, this study introduces the use of displacement data obtained by tracking in-vivo ultrasound radio frequency signals (i.e., real displacement data) during training, employing a semi-supervised approach to enhance the prediction accuracy of the model. Experimental results indicate that in phantom experiments, the semi-supervised model augmented with real displacement data provides more accurate predictions, with mean absolute errors and mean relative errors both around 3%, while the corresponding data for the fully supervised model are around 5%. When processing real displacement data, the area of prediction error of semi-supervised model was less than that of fully supervised model. The findings of this study confirm the effectiveness and practicality of the proposed approach, providing new insights for the application of deep learning methods in the reconstruction of elastic distribution from in-vivo ultrasound data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[基于半监督神经网络的弹性模量分布重构]。
准确重建组织弹性模量分布一直是超声弹性成像的重要挑战。考虑到现有的基于深度学习的监督重建方法在训练中仅使用带有随机噪声的模拟位移数据,不能完全提供体内超声数据所带来的复杂性和多样性,本研究引入了在训练中使用跟踪体内超声射频信号获得的位移数据(即真实位移数据),采用半监督的方法来提高模型的预测精度。实验结果表明,在幻影实验中,使用真实位移数据增强的半监督模型能提供更准确的预测,平均绝对误差和平均相对误差都在 3% 左右,而完全监督模型的相应数据则在 5% 左右。在处理真实位移数据时,半监督模型的预测误差范围小于全监督模型。本研究的结果证实了所提出方法的有效性和实用性,为深度学习方法在体内超声数据弹性分布重建中的应用提供了新的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
期刊最新文献
[A lightweight convolutional neural network for myositis classification from muscle ultrasound images]. [A review on depth perception techniques in organoid images]. [Advances in nanostructured surfaces for enhanced mechano-bactericidal applications]. [Advances in the diagnosis of prostate cancer based on image fusion]. [Analysis of nerve excitability in the dentate gyrus of the hippocampus in cerebral ischaemia-reperfusion mice].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1