An Ensemble Learning Method for Detection of Head and Neck Squamous Cell Carcinoma Using Polarized Hyperspectral Microscopic Imaging.

Hasan K Mubarak, Ximing Zhou, Doreen Palsgrove, Baran D Sumer, Amy Y Chen, Baowei Fei
{"title":"An Ensemble Learning Method for Detection of Head and Neck Squamous Cell Carcinoma Using Polarized Hyperspectral Microscopic Imaging.","authors":"Hasan K Mubarak, Ximing Zhou, Doreen Palsgrove, Baran D Sumer, Amy Y Chen, Baowei Fei","doi":"10.1117/12.3007869","DOIUrl":null,"url":null,"abstract":"<p><p>Head and neck squamous cell carcinoma (HNSCC) has a high mortality rate. In this study, we developed a Stokes-vector-derived polarized hyperspectral imaging (PHSI) system for H&E-stained pathological slides with HNSCC and built a dataset to develop a deep learning classification method based on convolutional neural networks (CNN). We use our polarized hyperspectral microscope to collect the four Stokes parameter hypercubes (S0, S1, S2, and S3) from 56 patients and synthesize pseudo-RGB images using a transformation function that approximates the human eye's spectral response to visual stimuli. Each image is divided into patches. Data augmentation is applied using rotations and flipping. We create a four-branch model architecture where each branch is trained on one Stokes parameter individually, then we freeze the branches and fine-tune the top layers of our model to generate final predictions. Our results show high accuracy, sensitivity, and specificity, indicating that our model performed well on our dataset. Future works can improve upon these results by training on more varied data, classifying tumors based on their grade, and introducing more recent architectural techniques.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12933 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11073817/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3007869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Head and neck squamous cell carcinoma (HNSCC) has a high mortality rate. In this study, we developed a Stokes-vector-derived polarized hyperspectral imaging (PHSI) system for H&E-stained pathological slides with HNSCC and built a dataset to develop a deep learning classification method based on convolutional neural networks (CNN). We use our polarized hyperspectral microscope to collect the four Stokes parameter hypercubes (S0, S1, S2, and S3) from 56 patients and synthesize pseudo-RGB images using a transformation function that approximates the human eye's spectral response to visual stimuli. Each image is divided into patches. Data augmentation is applied using rotations and flipping. We create a four-branch model architecture where each branch is trained on one Stokes parameter individually, then we freeze the branches and fine-tune the top layers of our model to generate final predictions. Our results show high accuracy, sensitivity, and specificity, indicating that our model performed well on our dataset. Future works can improve upon these results by training on more varied data, classifying tumors based on their grade, and introducing more recent architectural techniques.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用偏振高光谱显微成像检测头颈部鳞状细胞癌的集合学习法
头颈部鳞状细胞癌(HNSCC)的死亡率很高。在本研究中,我们针对 HNSCC 的 H&E 染色病理切片开发了一种斯托克斯向量衍生偏振高光谱成像(PHSI)系统,并建立了一个数据集,以开发基于卷积神经网络(CNN)的深度学习分类方法。我们使用偏振高光谱显微镜收集了 56 名患者的四个斯托克斯参数超立方体(S0、S1、S2 和 S3),并使用近似人眼对视觉刺激的光谱响应的变换函数合成了伪 RGB 图像。每幅图像都被划分为多个斑块。使用旋转和翻转进行数据增强。我们创建了一个四分支模型架构,其中每个分支都单独针对一个斯托克斯参数进行训练,然后我们冻结这些分支,并对模型的顶层进行微调,以生成最终预测结果。我们的结果显示了较高的准确性、灵敏度和特异性,表明我们的模型在数据集上表现良好。未来的工作可以通过在更多样的数据上进行训练、根据肿瘤的等级进行分类以及引入更多最新的架构技术来改进这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Automated multi-lesion annotation in chest X-rays: annotating over 450,000 images from public datasets using the AI-based Smart Imagery Framing and Truthing (SIFT) system. High-Fidelity 3D Reconstruction for Accurate Anatomical Measurements in Endoscopic Sinus Surgery. Optimizing parylene and photoconductor thickness in indirect conversion amorphous selenium detectors. Intra- and inter-scanner CT variability and their impact on diagnostic tasks. Quantitative Accuracy of CT Protocols for Cross-sectional and Longitudinal Assessment of COPD: A Virtual Imaging Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1