Precision Genome Editing with CRISPR-Cas9.

Q4 Biochemistry, Genetics and Molecular Biology Methods in molecular biology Pub Date : 2024-01-01 DOI:10.1007/978-1-0716-3782-1_21
Shahroz Rahman, Abdul Rehman Ikram, Farrukh Azeem, Muhammad Tahir Ul Qamar, Tayyaba Shaheen, Mehboob-Ur-Rahman
{"title":"Precision Genome Editing with CRISPR-Cas9.","authors":"Shahroz Rahman, Abdul Rehman Ikram, Farrukh Azeem, Muhammad Tahir Ul Qamar, Tayyaba Shaheen, Mehboob-Ur-Rahman","doi":"10.1007/978-1-0716-3782-1_21","DOIUrl":null,"url":null,"abstract":"<p><p>The CRISPR/Cas9 system is a revolutionary technology for genome editing that allows for precise and efficient modifications of DNA sequences. The system is composed of two main components, the Cas9 enzyme and a guide RNA (gRNA). The gRNA is designed to specifically target a desired DNA sequence, while the Cas9 enzyme acts as molecular scissors to cut the DNA at that specific location. The cell then repairs the digested DNA, either through nonhomologous end joining (NHEJ) or homology-directed repair (HDR), resulting in either indels or precise modifications of DNA sequences with broad implications in biotechnology, agriculture, and medicine. This chapter provides a practical approach for utilizing CRISPR/Cas9 in precise genome editing, including identifying the target gene sequence, designing gRNA and protein (Cas9), and delivering the CRISPR components to target cells.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2788 ","pages":"355-372"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-3782-1_21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The CRISPR/Cas9 system is a revolutionary technology for genome editing that allows for precise and efficient modifications of DNA sequences. The system is composed of two main components, the Cas9 enzyme and a guide RNA (gRNA). The gRNA is designed to specifically target a desired DNA sequence, while the Cas9 enzyme acts as molecular scissors to cut the DNA at that specific location. The cell then repairs the digested DNA, either through nonhomologous end joining (NHEJ) or homology-directed repair (HDR), resulting in either indels or precise modifications of DNA sequences with broad implications in biotechnology, agriculture, and medicine. This chapter provides a practical approach for utilizing CRISPR/Cas9 in precise genome editing, including identifying the target gene sequence, designing gRNA and protein (Cas9), and delivering the CRISPR components to target cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 CRISPR-Cas9 进行精准基因组编辑。
CRISPR/Cas9 系统是一种革命性的基因组编辑技术,可对 DNA 序列进行精确、高效的修改。该系统由 Cas9 酶和引导 RNA(gRNA)两大部分组成。gRNA 专为所需的 DNA 序列而设计,而 Cas9 酶则像分子剪刀一样在特定位置剪切 DNA。然后,细胞通过非同源末端连接(NHEJ)或同源定向修复(HDR)来修复被消化的 DNA,从而产生嵌合或精确修饰的 DNA 序列,对生物技术、农业和医学产生广泛影响。本章介绍了利用 CRISPR/Cas9 进行精确基因组编辑的实用方法,包括确定目标基因序列、设计 gRNA 和蛋白质 (Cas9),以及将 CRISPR 组件输送到目标细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
期刊最新文献
A Guideline Strategy for Identifying a Viral Gene/Protein Evading Antiviral Innate Immunity. A Guideline Strategy for Identifying Genes/Proteins Regulating Antiviral Innate Immunity. Application of Proteomics Technology Based on LC-MS Combined with Western Blotting and Co-IP in Antiviral Innate Immunity. Click Chemistry in Detecting Protein Modification. CRISPR-Mediated Construction of Gene-Knockout Mice for Investigating Antiviral Innate Immunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1