{"title":"A deep-learning-based scatter correction with water equivalent path length map for digital radiography.","authors":"Masayuki Hattori, Hisato Tsubakiya, Sung-Hyun Lee, Takayuki Kanai, Koji Suzuki, Tetsuya Yuasa","doi":"10.1007/s12194-024-00807-9","DOIUrl":null,"url":null,"abstract":"<p><p>We proposed a new deep learning (DL) model for accurate scatter correction in digital radiography. The proposed network featured a pixel-wise water equivalent path length (WEPL) map of subjects with diverse sizes and 3D inner structures. The proposed U-Net model comprises two concatenated modules: one for generating a WEPL map and the other for predicting scatter using the WEPL map as auxiliary information. First, 3D CT images were used as numerical phantoms for training and validation, generating observed and scattered images by Monte Carlo simulation, and WEPL maps using Siddon's algorithm. Then, we optimised the model without overfitting. Next, we validated the proposed model's performance by comparing it with other DL models. The proposed model obtained scatter-corrected images with a peak signal-to-noise ratio of 44.24 ± 2.89 dB and a structural similarity index measure of 0.9987 ± 0.0004, which were higher than other DL models. Finally, scatter fractions (SFs) were compared with other DL models using an actual phantom to confirm practicality. Among DL models, the proposed model showed the smallest deviation from measured SF values. Furthermore, using an actual radiograph containing an acrylic object, the contrast-to-noise ratio (CNR) of the proposed model and the anti-scatter grid were compared. The CNR of the images corrected using the proposed model are 16% and 82% higher than those of the raw and grid-applied images, respectively. The advantage of the proposed method is that no actual radiography system is required for collecting training dataset, as the dataset is created from CT images using Monte Carlo simulation.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"488-503"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00807-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
We proposed a new deep learning (DL) model for accurate scatter correction in digital radiography. The proposed network featured a pixel-wise water equivalent path length (WEPL) map of subjects with diverse sizes and 3D inner structures. The proposed U-Net model comprises two concatenated modules: one for generating a WEPL map and the other for predicting scatter using the WEPL map as auxiliary information. First, 3D CT images were used as numerical phantoms for training and validation, generating observed and scattered images by Monte Carlo simulation, and WEPL maps using Siddon's algorithm. Then, we optimised the model without overfitting. Next, we validated the proposed model's performance by comparing it with other DL models. The proposed model obtained scatter-corrected images with a peak signal-to-noise ratio of 44.24 ± 2.89 dB and a structural similarity index measure of 0.9987 ± 0.0004, which were higher than other DL models. Finally, scatter fractions (SFs) were compared with other DL models using an actual phantom to confirm practicality. Among DL models, the proposed model showed the smallest deviation from measured SF values. Furthermore, using an actual radiograph containing an acrylic object, the contrast-to-noise ratio (CNR) of the proposed model and the anti-scatter grid were compared. The CNR of the images corrected using the proposed model are 16% and 82% higher than those of the raw and grid-applied images, respectively. The advantage of the proposed method is that no actual radiography system is required for collecting training dataset, as the dataset is created from CT images using Monte Carlo simulation.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.