Investigating the Link Between Subjective Depth Perception Deficits and Objective Stereoscopic Vision Deficits in Individuals With Acquired Brain Injury.
{"title":"Investigating the Link Between Subjective Depth Perception Deficits and Objective Stereoscopic Vision Deficits in Individuals With Acquired Brain Injury.","authors":"Michitaka Funayama, Tomohito Hojo, Yoshitaka Nakagawa, Shin Kurose, Akihiro Koreki","doi":"10.1097/WNN.0000000000000369","DOIUrl":null,"url":null,"abstract":"<p><p>Individuals with acquired brain injury have reported subjective complaints of depth perception deficits, but few have undergone objective assessments to confirm these deficits. As a result, the literature currently lacks reports detailing the correlation between subjective depth perception deficits and objective stereoscopic vision deficits in individuals with acquired brain injury, particularly those cases that are characterized by a clearly defined lesion. To investigate this relationship, we recruited three individuals with acquired brain injury who experienced depth perception deficits and related difficulties in their daily lives. We had them take neurologic, ophthalmological, and neuropsychological examinations. We also had them take two types of stereoscopic vision tests: a Howard-Dolman-type stereoscopic vision test and the Topcon New Objective Stereo Test. Then, we compared the results with those of two control groups: a group with damage to the right hemisphere of the brain and a group of healthy controls. Performance on the two stereoscopic vision tests was severely impaired in the three patients. One of the patients also presented with cerebral diplopia. We identified the potential neural basis of these deficits in the cuneus and the posterior section of the superior parietal lobule, which play a role in vergence fusion and are located in the caudal region of the dorso-dorsal visual pathway, which is known to be crucial not only for visual spatial perception, but also for reaching, grasping, and making hand postures in the further course of that pathway.</p>","PeriodicalId":50671,"journal":{"name":"Cognitive and Behavioral Neurology","volume":" ","pages":"82-95"},"PeriodicalIF":1.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive and Behavioral Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNN.0000000000000369","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Individuals with acquired brain injury have reported subjective complaints of depth perception deficits, but few have undergone objective assessments to confirm these deficits. As a result, the literature currently lacks reports detailing the correlation between subjective depth perception deficits and objective stereoscopic vision deficits in individuals with acquired brain injury, particularly those cases that are characterized by a clearly defined lesion. To investigate this relationship, we recruited three individuals with acquired brain injury who experienced depth perception deficits and related difficulties in their daily lives. We had them take neurologic, ophthalmological, and neuropsychological examinations. We also had them take two types of stereoscopic vision tests: a Howard-Dolman-type stereoscopic vision test and the Topcon New Objective Stereo Test. Then, we compared the results with those of two control groups: a group with damage to the right hemisphere of the brain and a group of healthy controls. Performance on the two stereoscopic vision tests was severely impaired in the three patients. One of the patients also presented with cerebral diplopia. We identified the potential neural basis of these deficits in the cuneus and the posterior section of the superior parietal lobule, which play a role in vergence fusion and are located in the caudal region of the dorso-dorsal visual pathway, which is known to be crucial not only for visual spatial perception, but also for reaching, grasping, and making hand postures in the further course of that pathway.
期刊介绍:
Cognitive and Behavioral Neurology (CBN) is a forum for advances in the neurologic understanding and possible treatment of human disorders that affect thinking, learning, memory, communication, and behavior. As an incubator for innovations in these fields, CBN helps transform theory into practice. The journal serves clinical research, patient care, education, and professional advancement.
The journal welcomes contributions from neurology, cognitive neuroscience, neuropsychology, neuropsychiatry, and other relevant fields. The editors particularly encourage review articles (including reviews of clinical practice), experimental and observational case reports, instructional articles for interested students and professionals in other fields, and innovative articles that do not fit neatly into any category. Also welcome are therapeutic trials and other experimental and observational studies, brief reports, first-person accounts of neurologic experiences, position papers, hypotheses, opinion papers, commentaries, historical perspectives, and book reviews.