Syntactic sugars: crafting a regular expression framework for glycan structures.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-04-19 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae059
Alexander R Bennett, Daniel Bojar
{"title":"Syntactic sugars: crafting a regular expression framework for glycan structures.","authors":"Alexander R Bennett, Daniel Bojar","doi":"10.1093/bioadv/vbae059","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Structural analysis of glycans poses significant challenges in glycobiology due to their complex sequences. Research questions such as analyzing the sequence content of the α1-6 branch in <i>N</i>-glycans, are biologically meaningful yet can be hard to automate.</p><p><strong>Results: </strong>Here, we introduce a regular expression system, designed for glycans, feature-complete, and closely aligned with regular expression formatting. We use this to annotate glycan motifs of arbitrary complexity, perform differential expression analysis on designated sequence stretches, or elucidate branch-specific binding specificities of lectins in an automated manner. We are confident that glycan regular expressions will empower computational analyses of these sequences.</p><p><strong>Availability and implementation: </strong>Our regular expression framework for glycans is implemented in Python and is incorporated into the open-source glycowork package (version 1.1+). Code and documentation are available at https://github.com/BojarLab/glycowork/blob/master/glycowork/motif/regex.py.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11069104/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Structural analysis of glycans poses significant challenges in glycobiology due to their complex sequences. Research questions such as analyzing the sequence content of the α1-6 branch in N-glycans, are biologically meaningful yet can be hard to automate.

Results: Here, we introduce a regular expression system, designed for glycans, feature-complete, and closely aligned with regular expression formatting. We use this to annotate glycan motifs of arbitrary complexity, perform differential expression analysis on designated sequence stretches, or elucidate branch-specific binding specificities of lectins in an automated manner. We are confident that glycan regular expressions will empower computational analyses of these sequences.

Availability and implementation: Our regular expression framework for glycans is implemented in Python and is incorporated into the open-source glycowork package (version 1.1+). Code and documentation are available at https://github.com/BojarLab/glycowork/blob/master/glycowork/motif/regex.py.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语法糖:为聚糖结构设计正则表达式框架。
动机:由于聚糖序列复杂,对其进行结构分析是糖生物学领域的重大挑战。诸如分析 N-聚糖中 α1-6 分支的序列内容等研究问题具有生物学意义,但却很难实现自动化:在这里,我们介绍了一种正则表达式系统,该系统专为聚糖设计,特征完整,并与正则表达式格式紧密结合。我们用它来注释任意复杂程度的聚糖图案,对指定的序列片段进行差异表达分析,或以自动化方式阐明凝集素的分支特异性结合。我们相信,聚糖正则表达式将增强这些序列的计算分析能力:我们的聚糖正则表达式框架是用 Python 实现的,并纳入了开源的 glycowork 软件包(版本 1.1+)。代码和文档可从 https://github.com/BojarLab/glycowork/blob/master/glycowork/motif/regex.py 获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
motifbreakR v2: expanded variant analysis including indels and integrated evidence from transcription factor binding databases. TransAnnot-a fast transcriptome annotation pipeline. PatchProt: hydrophobic patch prediction using protein foundation models. Accelerating protein-protein interaction screens with reduced AlphaFold-Multimer sampling. CAPTVRED: an automated pipeline for viral tracking and discovery from capture-based metagenomics samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1