Systematic analysis of proteome turnover in an organoid model of pancreatic cancer by dSILO.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2024-05-20 Epub Date: 2024-04-26 DOI:10.1016/j.crmeth.2024.100760
Alison B Ross, Darvesh Gorhe, Jenny Kim Kim, Stefanie Hodapp, Lela DeVine, Karina M Chan, Iok In Christine Chio, Marko Jovanovic, Marina Ayres Pereira
{"title":"Systematic analysis of proteome turnover in an organoid model of pancreatic cancer by dSILO.","authors":"Alison B Ross, Darvesh Gorhe, Jenny Kim Kim, Stefanie Hodapp, Lela DeVine, Karina M Chan, Iok In Christine Chio, Marko Jovanovic, Marina Ayres Pereira","doi":"10.1016/j.crmeth.2024.100760","DOIUrl":null,"url":null,"abstract":"<p><p>The role of protein turnover in pancreatic ductal adenocarcinoma (PDA) metastasis has not been previously investigated. We introduce dynamic stable-isotope labeling of organoids (dSILO): a dynamic SILAC derivative that combines a pulse of isotopically labeled amino acids with isobaric tandem mass-tag (TMT) labeling to measure proteome-wide protein turnover rates in organoids. We applied it to a PDA model and discovered that metastatic organoids exhibit an accelerated global proteome turnover compared to primary tumor organoids. Globally, most turnover changes are not reflected at the level of protein abundance. Interestingly, the group of proteins that show the highest turnover increase in metastatic PDA compared to tumor is involved in mitochondrial respiration. This indicates that metastatic PDA may adopt alternative respiratory chain functionality that is controlled by the rate at which proteins are turned over. Collectively, our analysis of proteome turnover in PDA organoids offers insights into the mechanisms underlying PDA metastasis.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11133751/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The role of protein turnover in pancreatic ductal adenocarcinoma (PDA) metastasis has not been previously investigated. We introduce dynamic stable-isotope labeling of organoids (dSILO): a dynamic SILAC derivative that combines a pulse of isotopically labeled amino acids with isobaric tandem mass-tag (TMT) labeling to measure proteome-wide protein turnover rates in organoids. We applied it to a PDA model and discovered that metastatic organoids exhibit an accelerated global proteome turnover compared to primary tumor organoids. Globally, most turnover changes are not reflected at the level of protein abundance. Interestingly, the group of proteins that show the highest turnover increase in metastatic PDA compared to tumor is involved in mitochondrial respiration. This indicates that metastatic PDA may adopt alternative respiratory chain functionality that is controlled by the rate at which proteins are turned over. Collectively, our analysis of proteome turnover in PDA organoids offers insights into the mechanisms underlying PDA metastasis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 dSILO 系统分析胰腺癌类器官模型中蛋白质组的周转。
蛋白质更替在胰腺导管腺癌(PDA)转移中的作用尚未得到研究。我们介绍了动态稳定同位素标记器官组织(dSILO):一种动态 SILAC 衍生方法,它将同位素标记氨基酸脉冲与等位串联质量标签(TMT)标记相结合,测量器官组织中整个蛋白质组的蛋白质周转率。我们将其应用于 PDA 模型,发现与原发性肿瘤器官组织相比,转移性器官组织表现出更快的全蛋白质组周转。在全球范围内,大多数周转变化并没有反映在蛋白质丰度水平上。有趣的是,与肿瘤相比,转移性PDA中周转率增加最多的一组蛋白质参与线粒体呼吸。这表明,转移性 PDA 可能采用了替代呼吸链功能,而这种功能受蛋白质周转率的控制。总之,我们对 PDA 器官组织中蛋白质组周转的分析为了解 PDA 转移的内在机制提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
Optimized full-spectrum flow cytometry panel for deep immunophenotyping of murine lungs. A deep learning framework combining molecular image and protein structural representations identifies candidate drugs for pain. Adult zebrafish can learn Morris water maze-like tasks in a two-dimensional virtual reality system. Recovering single-cell expression profiles from spatial transcriptomics with scResolve. Mimicking and analyzing the tumor microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1