Deep Learning Prostate MRI Segmentation Accuracy and Robustness: A Systematic Review.

IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Radiology-Artificial Intelligence Pub Date : 2024-07-01 DOI:10.1148/ryai.230138
Mohammad-Kasim Fassia, Adithya Balasubramanian, Sungmin Woo, Hebert Alberto Vargas, Hedvig Hricak, Ender Konukoglu, Anton S Becker
{"title":"Deep Learning Prostate MRI Segmentation Accuracy and Robustness: A Systematic Review.","authors":"Mohammad-Kasim Fassia, Adithya Balasubramanian, Sungmin Woo, Hebert Alberto Vargas, Hedvig Hricak, Ender Konukoglu, Anton S Becker","doi":"10.1148/ryai.230138","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To investigate the accuracy and robustness of prostate segmentation using deep learning across various training data sizes, MRI vendors, prostate zones, and testing methods relative to fellowship-trained diagnostic radiologists. Materials and Methods In this systematic review, Embase, PubMed, Scopus, and Web of Science databases were queried for English-language articles using keywords and related terms for prostate MRI segmentation and deep learning algorithms dated to July 31, 2022. A total of 691 articles from the search query were collected and subsequently filtered to 48 on the basis of predefined inclusion and exclusion criteria. Multiple characteristics were extracted from selected studies, such as deep learning algorithm performance, MRI vendor, and training dataset features. The primary outcome was comparison of mean Dice similarity coefficient (DSC) for prostate segmentation for deep learning algorithms versus diagnostic radiologists. Results Forty-eight studies were included. Most published deep learning algorithms for whole prostate gland segmentation (39 of 42 [93%]) had a DSC at or above expert level (DSC ≥ 0.86). The mean DSC was 0.79 ± 0.06 (SD) for peripheral zone, 0.87 ± 0.05 for transition zone, and 0.90 ± 0.04 for whole prostate gland segmentation. For selected studies that used one major MRI vendor, the mean DSCs of each were as follows: General Electric (three of 48 studies), 0.92 ± 0.03; Philips (four of 48 studies), 0.92 ± 0.02; and Siemens (six of 48 studies), 0.91 ± 0.03. Conclusion Deep learning algorithms for prostate MRI segmentation demonstrated accuracy similar to that of expert radiologists despite varying parameters; therefore, future research should shift toward evaluating segmentation robustness and patient outcomes across diverse clinical settings. <b>Keywords:</b> MRI, Genital/Reproductive, Prostate Segmentation, Deep Learning Systematic review registration link: osf.io/nxaev © RSNA, 2024.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294957/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.230138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose To investigate the accuracy and robustness of prostate segmentation using deep learning across various training data sizes, MRI vendors, prostate zones, and testing methods relative to fellowship-trained diagnostic radiologists. Materials and Methods In this systematic review, Embase, PubMed, Scopus, and Web of Science databases were queried for English-language articles using keywords and related terms for prostate MRI segmentation and deep learning algorithms dated to July 31, 2022. A total of 691 articles from the search query were collected and subsequently filtered to 48 on the basis of predefined inclusion and exclusion criteria. Multiple characteristics were extracted from selected studies, such as deep learning algorithm performance, MRI vendor, and training dataset features. The primary outcome was comparison of mean Dice similarity coefficient (DSC) for prostate segmentation for deep learning algorithms versus diagnostic radiologists. Results Forty-eight studies were included. Most published deep learning algorithms for whole prostate gland segmentation (39 of 42 [93%]) had a DSC at or above expert level (DSC ≥ 0.86). The mean DSC was 0.79 ± 0.06 (SD) for peripheral zone, 0.87 ± 0.05 for transition zone, and 0.90 ± 0.04 for whole prostate gland segmentation. For selected studies that used one major MRI vendor, the mean DSCs of each were as follows: General Electric (three of 48 studies), 0.92 ± 0.03; Philips (four of 48 studies), 0.92 ± 0.02; and Siemens (six of 48 studies), 0.91 ± 0.03. Conclusion Deep learning algorithms for prostate MRI segmentation demonstrated accuracy similar to that of expert radiologists despite varying parameters; therefore, future research should shift toward evaluating segmentation robustness and patient outcomes across diverse clinical settings. Keywords: MRI, Genital/Reproductive, Prostate Segmentation, Deep Learning Systematic review registration link: osf.io/nxaev © RSNA, 2024.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习前列腺 MRI 分段准确性和鲁棒性:系统性综述。
"刚刚接受 "的论文经过同行评审,已被接受在《放射学》上发表:人工智能》上发表。这篇文章在以最终版本发表之前,还将经过校对、排版和校对审核。请注意,在制作最终校对稿的过程中,可能会发现一些错误,从而影响文章内容。目的 研究相对于接受过研究员培训的放射诊断医师,使用深度学习对各种训练数据大小、核磁共振成像供应商、前列腺区域和测试方法进行前列腺分割的准确性和鲁棒性。材料与方法 在这篇系统性综述中,我们使用关键词和相关术语在 EMBASE、PubMed、Scopus 和 Web of Science 数据库中查询了截至 2022 年 7 月 31 日有关前列腺 MRI 分割和深度学习算法的英文文章。搜索结果共收集到 691 篇文章,随后根据预定义的纳入和排除标准筛选出 48 篇文章。从所选研究中提取了多种特征,如深度学习算法性能、核磁共振成像供应商和训练数据集特征。主要结果是比较深度学习算法与放射诊断医师在前列腺分割方面的平均狄斯相似系数(DSC)。结果 共纳入 48 项研究。绝大多数已发表的全前列腺分割深度学习算法(39/42 或 93%)的 DSC 达到或超过专家水平(DSC ≥ 0.86)。外周区的平均 DSC 为 0.79 ± 0.06,过渡区为 0.87 ± 0.05,整个前列腺的平均 DSC 为 0.90 ± 0.04。对于使用一家主要核磁共振成像供应商的选定研究,每项研究的平均 DSCs 如下:通用电气(3/48 项研究)0.92 ± 0.03,飞利浦(4/48 项研究)0.92 ± 0.02,西门子(6/48 项研究)0.91 ± 0.03。结论 用于前列腺 MRI 分段的深度学习算法尽管参数不同,但其准确性与放射科专家相当,因此未来的研究应转向评估不同临床环境下的分段稳健性和患者预后。©RSNA,2024。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
期刊最新文献
Integrated Deep Learning Model for the Detection, Segmentation, and Morphologic Analysis of Intracranial Aneurysms Using CT Angiography. RSNA 2023 Abdominal Trauma AI Challenge Review and Outcomes Analysis. SCIseg: Automatic Segmentation of Intramedullary Lesions in Spinal Cord Injury on T2-weighted MRI Scans. Combining Biology-based and MRI Data-driven Modeling to Predict Response to Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer. Optimizing Performance of Transformer-based Models for Fetal Brain MR Image Segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1