Near-infrared two-photon absorption and excited state dynamics of a fluorescent diarylethene derivative.

IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Photochemical & Photobiological Sciences Pub Date : 2024-06-01 Epub Date: 2024-05-07 DOI:10.1007/s43630-024-00573-y
Hikaru Sotome, Tatsuhiro Nagasaka, Tatsuki Konishi, Kenji Kamada, Masakazu Morimoto, Masahiro Irie, Hiroshi Miyasaka
{"title":"Near-infrared two-photon absorption and excited state dynamics of a fluorescent diarylethene derivative.","authors":"Hikaru Sotome, Tatsuhiro Nagasaka, Tatsuki Konishi, Kenji Kamada, Masakazu Morimoto, Masahiro Irie, Hiroshi Miyasaka","doi":"10.1007/s43630-024-00573-y","DOIUrl":null,"url":null,"abstract":"<p><p>Near-infrared two-photon absorption and excited state dynamics of a fluorescent diarylethene (fDAE) derivative were investigated by time-resolved absorption and fluorescence spectroscopies. Prescreening with quantum chemical calculation predicted that a derivative with methylthienyl groups (mt-fDAE) in the closed-ring isomer has a two-photon absorption cross-section larger than 1000 GM, which was experimentally verified by Z-scan measurements and excitation power dependence in transient absorption. Comparison of transient absorption spectra under one-photon and simultaneous two-photon excitation conditions revealed that the closed-ring isomer of mt-fDAE populated into higher excited states deactivates following three pathways on a timescale of ca. 200 fs: (i) the cycloreversion reaction more efficient than that by the one-photon process, (ii) internal conversion into the S<sub>1</sub> state, and (iii) relaxation into a lower state (S<sub>1</sub>' state) different from the S<sub>1</sub> state. Time-resolved fluorescence measurements demonstrated that this S<sub>1</sub>' state is relaxed to the S<sub>1</sub> state with the large emission probability. These findings obtained in the present work contribute to extension of the ON-OFF switching capability of fDAE to the biological window and application to super-resolution fluorescence imaging in a two-photon manner.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"1041-1050"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemical & Photobiological Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s43630-024-00573-y","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Near-infrared two-photon absorption and excited state dynamics of a fluorescent diarylethene (fDAE) derivative were investigated by time-resolved absorption and fluorescence spectroscopies. Prescreening with quantum chemical calculation predicted that a derivative with methylthienyl groups (mt-fDAE) in the closed-ring isomer has a two-photon absorption cross-section larger than 1000 GM, which was experimentally verified by Z-scan measurements and excitation power dependence in transient absorption. Comparison of transient absorption spectra under one-photon and simultaneous two-photon excitation conditions revealed that the closed-ring isomer of mt-fDAE populated into higher excited states deactivates following three pathways on a timescale of ca. 200 fs: (i) the cycloreversion reaction more efficient than that by the one-photon process, (ii) internal conversion into the S1 state, and (iii) relaxation into a lower state (S1' state) different from the S1 state. Time-resolved fluorescence measurements demonstrated that this S1' state is relaxed to the S1 state with the large emission probability. These findings obtained in the present work contribute to extension of the ON-OFF switching capability of fDAE to the biological window and application to super-resolution fluorescence imaging in a two-photon manner.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种荧光二芳香烃衍生物的近红外双光子吸收和激发态动力学。
通过时间分辨吸收光谱和荧光光谱研究了荧光二芳噻吩(fDAE)衍生物的近红外双光子吸收和激发态动力学。通过量子化学计算预筛选预测,闭环异构体中带有甲基噻吩基团(mt-fDAE)的衍生物具有大于 1000 GM 的双光子吸收截面,这一点通过 Z 扫描测量和瞬态吸收中的激发功率依赖性得到了实验验证。比较单光子和双光子同时激发条件下的瞬态吸收光谱发现,mt-fDAE 的闭环异构体进入较高激发态后,在约 200 fs 的时间尺度内通过三种途径失活:(i) 比单光子过程更有效的环化反应,(ii) 内部转化为 S1 态,(iii) 松弛进入不同于 S1 态的较低态(S1'态)。时间分辨荧光测量结果表明,这种 S1'态被弛豫到具有大发射概率的 S1 态。本研究的这些发现有助于将 fDAE 的开-关切换能力扩展到生物窗口,并以双光子方式应用于超分辨荧光成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Photochemical & Photobiological Sciences
Photochemical & Photobiological Sciences 生物-生化与分子生物学
CiteScore
5.60
自引率
6.50%
发文量
201
审稿时长
2.3 months
期刊介绍: A society-owned journal publishing high quality research on all aspects of photochemistry and photobiology.
期刊最新文献
Photophysical behavior of meso-N-butylcarbazole-substituted BODIPY in different nano-scale organized media. A colorimetric and ratiometric fluorescent probe of hypochlorous acid and its bio-imaging application. A review of ultraviolet filters and their impact on aquatic environments. Type I and Type II photosensitization of DNA etheno adducts. Two isoniazid-based chemosensors for the detection of cyanide ions in solution: an experimental and computational study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1