Gregory M. Boiczyk, Noah Pearson, Vivek Bhaskar Kote, Aravind Sundaramurthy, Dhananjay Radhakrishnan Subramaniam, Jose E. Rubio, Ginu Unnikrishnan, Jaques Reifman, Kenneth L. Monson
{"title":"Region specific anisotropy and rate dependence of Göttingen minipig brain tissue","authors":"Gregory M. Boiczyk, Noah Pearson, Vivek Bhaskar Kote, Aravind Sundaramurthy, Dhananjay Radhakrishnan Subramaniam, Jose E. Rubio, Ginu Unnikrishnan, Jaques Reifman, Kenneth L. Monson","doi":"10.1007/s10237-024-01852-4","DOIUrl":null,"url":null,"abstract":"<div><p>Traumatic brain injury is a major cause of morbidity in civilian as well as military populations. Computational simulations of injurious events are an important tool to understanding the biomechanics of brain injury and evaluating injury criteria and safety measures. However, these computational models are highly dependent on the material parameters used to represent the brain tissue. Reported material properties of tissue from the cerebrum and cerebellum remain poorly defined at high rates and with respect to anisotropy. In this work, brain tissue from the cerebrum and cerebellum of male Göttingen minipigs was tested in one of three directions relative to axon fibers in oscillatory simple shear over a large range of strain rates from 0.025 to 250 s<sup>−1</sup>. Brain tissue showed significant direction dependence in both regions, each with a single preferred loading direction. The tissue also showed strong rate dependence over the full range of rates considered. Transversely isotropic hyper-viscoelastic constitutive models were fit to experimental data using dynamic inverse finite element models to account for wave propagation observed at high strain rates. The fit constitutive models predicted the response in all directions well at rates below 100 s<sup>−1</sup>, after which they adequately predicted the initial two loading cycles, with the exception of the 250 s<sup>−1</sup> rate, where models performed poorly. These constitutive models can be readily implemented in finite element packages and are suitable for simulation of both conventional and blast injury in porcine, especially Göttingen minipig, models.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1511 - 1529"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10237-024-01852-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Traumatic brain injury is a major cause of morbidity in civilian as well as military populations. Computational simulations of injurious events are an important tool to understanding the biomechanics of brain injury and evaluating injury criteria and safety measures. However, these computational models are highly dependent on the material parameters used to represent the brain tissue. Reported material properties of tissue from the cerebrum and cerebellum remain poorly defined at high rates and with respect to anisotropy. In this work, brain tissue from the cerebrum and cerebellum of male Göttingen minipigs was tested in one of three directions relative to axon fibers in oscillatory simple shear over a large range of strain rates from 0.025 to 250 s−1. Brain tissue showed significant direction dependence in both regions, each with a single preferred loading direction. The tissue also showed strong rate dependence over the full range of rates considered. Transversely isotropic hyper-viscoelastic constitutive models were fit to experimental data using dynamic inverse finite element models to account for wave propagation observed at high strain rates. The fit constitutive models predicted the response in all directions well at rates below 100 s−1, after which they adequately predicted the initial two loading cycles, with the exception of the 250 s−1 rate, where models performed poorly. These constitutive models can be readily implemented in finite element packages and are suitable for simulation of both conventional and blast injury in porcine, especially Göttingen minipig, models.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.