Porphyrin Aluminum Metal-Organic Framework in Liquid Water, its Interaction with the Oxidized Organosulfur Compound Diethyl Sulfoxide, and its Sorption from Aqueous Solution.
Amarachukwu Agbim, Georgia-Annicette Banga-Bothy, Alexander Samokhvalov
{"title":"Porphyrin Aluminum Metal-Organic Framework in Liquid Water, its Interaction with the Oxidized Organosulfur Compound Diethyl Sulfoxide, and its Sorption from Aqueous Solution.","authors":"Amarachukwu Agbim, Georgia-Annicette Banga-Bothy, Alexander Samokhvalov","doi":"10.1177/00037028241248673","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidized organosulfur compounds and, in particular, sulfoxides are of interest as solvents in the semiconductor and pharmaceutical industry, environmental contaminants, and simulants in deactivation of chemical warfare agents. An experimental study is reported of the interaction of porphyrin aluminum metal-organic framework Al-MOF-TCPPH<sub>2</sub> (Compound 2) with diethyl sulfoxide (DESO) in pure form and in aqueous solution. First, the suitability of Compound 2 as sorbent in aqueous solution was assessed; namely, its long-term stability (up to 15 days) in liquid water has been investigated at room temperature and under stirring. Here, a novel facile spectroscopic method has been used, a periodic micro-sampling of sorbent from suspension, followed by vacuum mini-filtration and an ex situ time-dependent attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) analysis. Next, the interaction of Compound 2 with pure liquid DESO under ambient conditions was investigated, which yields the stoichiometric adsorption complex (Al-MOF-TCPPH<sub>2</sub>)<sub>1</sub>(DESO)<sub>2</sub> denoted Compound 3. In this adsorption complex, molecules of DESO interact with the OH group and carboxylate group of the sorbent. Then, the removal of DESO from Compound 3 was assessed, using facile treatment with warm water in the micro Soxhlet apparatus followed by the ATR FT-IR analysis. Finally, Compound 2 was tested in sorption of DESO from diluted aqueous solution. In the initial step, the sorption proceeds very quickly (in <1 min the concentration of DESO decreases by about 20%) followed by a much slower step. The maximum amount of adsorbed DESO corresponds to half of the amount adsorbed from pure DESO as found by the high-performance liquid chromatography-ultraviolet detection method. This adsorbed amount corresponds to 1 mol DESO adsorbate per mol of sorbent. Porphyrin aluminum metal-organic framework Compound 2 is promising for the removal of DESO from diluted aqueous solution, and it is of interest for the removal of similar oxidized organosulfur compounds.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241248673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidized organosulfur compounds and, in particular, sulfoxides are of interest as solvents in the semiconductor and pharmaceutical industry, environmental contaminants, and simulants in deactivation of chemical warfare agents. An experimental study is reported of the interaction of porphyrin aluminum metal-organic framework Al-MOF-TCPPH2 (Compound 2) with diethyl sulfoxide (DESO) in pure form and in aqueous solution. First, the suitability of Compound 2 as sorbent in aqueous solution was assessed; namely, its long-term stability (up to 15 days) in liquid water has been investigated at room temperature and under stirring. Here, a novel facile spectroscopic method has been used, a periodic micro-sampling of sorbent from suspension, followed by vacuum mini-filtration and an ex situ time-dependent attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) analysis. Next, the interaction of Compound 2 with pure liquid DESO under ambient conditions was investigated, which yields the stoichiometric adsorption complex (Al-MOF-TCPPH2)1(DESO)2 denoted Compound 3. In this adsorption complex, molecules of DESO interact with the OH group and carboxylate group of the sorbent. Then, the removal of DESO from Compound 3 was assessed, using facile treatment with warm water in the micro Soxhlet apparatus followed by the ATR FT-IR analysis. Finally, Compound 2 was tested in sorption of DESO from diluted aqueous solution. In the initial step, the sorption proceeds very quickly (in <1 min the concentration of DESO decreases by about 20%) followed by a much slower step. The maximum amount of adsorbed DESO corresponds to half of the amount adsorbed from pure DESO as found by the high-performance liquid chromatography-ultraviolet detection method. This adsorbed amount corresponds to 1 mol DESO adsorbate per mol of sorbent. Porphyrin aluminum metal-organic framework Compound 2 is promising for the removal of DESO from diluted aqueous solution, and it is of interest for the removal of similar oxidized organosulfur compounds.