{"title":"Recent Developments of Hybrid Fluorescence Techniques: Advances in Amyloid Detection Methods.","authors":"A Miraclin Prasanna, Priyankar Sen","doi":"10.2174/0113892037291597240429094515","DOIUrl":null,"url":null,"abstract":"<p><p>Amyloid fibrils are formed from various pathological proteins. Monitoring their aggregation process is necessary for early detection and treatment. Among the available detection techniques, fluorescence is simple, intuitive, and convenient due to its sensitive and selective mode of detection. It has certain disadvantages like poor photothermal stability and detection state limitation. Research has focused on minimising the limitation by developing hybrid fluorescence techniques. This review focuses on the two ways fluorescence (intrinsic and extrinsic) has been used to monitor amyloid fibrils. In intrinsic/label free fluorescence: i) The fluorescence emission through aromatic amino acid residues like phenylalanine (F), tyrosine (Y) and tryptophan (W) is present in amyloidogenic peptides/protein sequence. And ii) The structural changes from alpha helix to cross-β-sheet structures during amyloid formation contribute to the fluorescence emission. The second method focuses on the use of extrinsic fluorophores to monitor amyloid fibrils i) organic dyes/small molecules, ii) fluorescent tagged proteins, iii) nanoparticles, iv) metal complexes and v) conjugated polymers. All these fluorophores have their own limitations. Developing them into hybrid fluorescence techniques and converting it into biosensors can contribute to early detection of disease.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":"667-681"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037291597240429094515","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Amyloid fibrils are formed from various pathological proteins. Monitoring their aggregation process is necessary for early detection and treatment. Among the available detection techniques, fluorescence is simple, intuitive, and convenient due to its sensitive and selective mode of detection. It has certain disadvantages like poor photothermal stability and detection state limitation. Research has focused on minimising the limitation by developing hybrid fluorescence techniques. This review focuses on the two ways fluorescence (intrinsic and extrinsic) has been used to monitor amyloid fibrils. In intrinsic/label free fluorescence: i) The fluorescence emission through aromatic amino acid residues like phenylalanine (F), tyrosine (Y) and tryptophan (W) is present in amyloidogenic peptides/protein sequence. And ii) The structural changes from alpha helix to cross-β-sheet structures during amyloid formation contribute to the fluorescence emission. The second method focuses on the use of extrinsic fluorophores to monitor amyloid fibrils i) organic dyes/small molecules, ii) fluorescent tagged proteins, iii) nanoparticles, iv) metal complexes and v) conjugated polymers. All these fluorophores have their own limitations. Developing them into hybrid fluorescence techniques and converting it into biosensors can contribute to early detection of disease.
期刊介绍:
Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.