Optimizing the conversion of phosphoenolpyruvate to lactate by enzymatic channeling with mixed nanoparticle display.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2024-05-20 Epub Date: 2024-05-06 DOI:10.1016/j.crmeth.2024.100764
Shelby L Hooe, Christopher M Green, Kimihiro Susumu, Michael H Stewart, Joyce C Breger, Igor L Medintz
{"title":"Optimizing the conversion of phosphoenolpyruvate to lactate by enzymatic channeling with mixed nanoparticle display.","authors":"Shelby L Hooe, Christopher M Green, Kimihiro Susumu, Michael H Stewart, Joyce C Breger, Igor L Medintz","doi":"10.1016/j.crmeth.2024.100764","DOIUrl":null,"url":null,"abstract":"<p><p>Co-assembling enzymes with nanoparticles (NPs) into nanoclusters allows them to access channeling, a highly efficient form of multienzyme catalysis. Using pyruvate kinase (PykA) and lactate dehydrogenase (LDH) to convert phosphoenolpyruvic acid to lactic acid with semiconductor quantum dots (QDs) confirms how enzyme cluster formation dictates the rate of coupled catalytic flux (k<sub>flux</sub>) across a series of differentially sized/shaped QDs and 2D nanoplatelets (NPLs). Enzyme kinetics and coupled flux were used to demonstrate that by mixing different NP systems into clusters, a >10× improvement in k<sub>flux</sub> is observed relative to free enzymes, which is also ≥2× greater than enhancement on individual NPs. Cluster formation was characterized with gel electrophoresis and transmission electron microscopy (TEM) imaging. The generalizability of this mixed-NP approach to improving flux is confirmed by application to a seven-enzyme system. This represents a powerful approach for accessing channeling with almost any choice of enzymes constituting a multienzyme cascade.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100764"},"PeriodicalIF":4.3000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11133815/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Co-assembling enzymes with nanoparticles (NPs) into nanoclusters allows them to access channeling, a highly efficient form of multienzyme catalysis. Using pyruvate kinase (PykA) and lactate dehydrogenase (LDH) to convert phosphoenolpyruvic acid to lactic acid with semiconductor quantum dots (QDs) confirms how enzyme cluster formation dictates the rate of coupled catalytic flux (kflux) across a series of differentially sized/shaped QDs and 2D nanoplatelets (NPLs). Enzyme kinetics and coupled flux were used to demonstrate that by mixing different NP systems into clusters, a >10× improvement in kflux is observed relative to free enzymes, which is also ≥2× greater than enhancement on individual NPs. Cluster formation was characterized with gel electrophoresis and transmission electron microscopy (TEM) imaging. The generalizability of this mixed-NP approach to improving flux is confirmed by application to a seven-enzyme system. This represents a powerful approach for accessing channeling with almost any choice of enzymes constituting a multienzyme cascade.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过混合纳米粒子显示的酶通道优化磷酸烯醇丙酮酸到乳酸的转化。
将酶与纳米粒子(NPs)共同组装成纳米团簇,可使酶进入通道,这是一种高效的多酶催化形式。利用丙酮酸激酶(PykA)和乳酸脱氢酶(LDH)与半导体量子点(QDs)将磷酸烯醇丙酮酸转化为乳酸,证实了酶簇的形成如何决定一系列不同大小/形状的QDs和二维纳米颗粒(NPLs)的耦合催化通量(kflux)的速率。酶动力学和耦合通量被用来证明,通过将不同的 NP 系统混合成簇,可以观察到相对于游离酶的 kflux 提高了 >10倍,这也比单个 NP 的提高≥2 倍。凝胶电泳和透射电子显微镜(TEM)成像对簇的形成进行了表征。将这种混合 NP 方法应用于七种酶系统,证实了它在提高通量方面的通用性。这代表了一种强大的方法,几乎可以选择任何酶构成多酶级联来获得通道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
Generation of super-resolution images from barcode-based spatial transcriptomics by deep image prior. Accelerated protein retention expansion microscopy using microwave radiation. Intact protein barcoding enables one-shot identification of CRISPRi strains and their metabolic state. Patient-derived tumor organoid and fibroblast assembloid models for interrogation of the tumor microenvironment in esophageal adenocarcinoma. Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1