Improving Automated Hemorrhage Detection at Sparse-View CT via U-Net-based Artifact Reduction.

IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Radiology-Artificial Intelligence Pub Date : 2024-07-01 DOI:10.1148/ryai.230275
Johannes Thalhammer, Manuel Schultheiß, Tina Dorosti, Tobias Lasser, Franz Pfeiffer, Daniela Pfeiffer, Florian Schaff
{"title":"Improving Automated Hemorrhage Detection at Sparse-View CT via U-Net-based Artifact Reduction.","authors":"Johannes Thalhammer, Manuel Schultheiß, Tina Dorosti, Tobias Lasser, Franz Pfeiffer, Daniela Pfeiffer, Florian Schaff","doi":"10.1148/ryai.230275","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To explore the potential benefits of deep learning-based artifact reduction in sparse-view cranial CT scans and its impact on automated hemorrhage detection. Materials and Methods In this retrospective study, a U-Net was trained for artifact reduction on simulated sparse-view cranial CT scans in 3000 patients, obtained from a public dataset and reconstructed with varying sparse-view levels. Additionally, EfficientNet-B2 was trained on full-view CT data from 17 545 patients for automated hemorrhage detection. Detection performance was evaluated using the area under the receiver operating characteristic curve (AUC), with differences assessed using the DeLong test, along with confusion matrices. A total variation (TV) postprocessing approach, commonly applied to sparse-view CT, served as the basis for comparison. A Bonferroni-corrected significance level of .001/6 = .00017 was used to accommodate for multiple hypotheses testing. Results Images with U-Net postprocessing were better than unprocessed and TV-processed images with respect to image quality and automated hemorrhage detection. With U-Net postprocessing, the number of views could be reduced from 4096 (AUC: 0.97 [95% CI: 0.97, 0.98]) to 512 (0.97 [95% CI: 0.97, 0.98], <i>P</i> < .00017) and to 256 views (0.97 [95% CI: 0.96, 0.97], <i>P</i> < .00017) with a minimal decrease in hemorrhage detection performance. This was accompanied by mean structural similarity index measure increases of 0.0210 (95% CI: 0.0210, 0.0211) and 0.0560 (95% CI: 0.0559, 0.0560) relative to unprocessed images. Conclusion U-Net-based artifact reduction substantially enhanced automated hemorrhage detection in sparse-view cranial CT scans. <b>Keywords:</b> CT, Head/Neck, Hemorrhage, Diagnosis, Supervised Learning <i>Supplemental material is available for this article.</i> © RSNA, 2024.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294955/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.230275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose To explore the potential benefits of deep learning-based artifact reduction in sparse-view cranial CT scans and its impact on automated hemorrhage detection. Materials and Methods In this retrospective study, a U-Net was trained for artifact reduction on simulated sparse-view cranial CT scans in 3000 patients, obtained from a public dataset and reconstructed with varying sparse-view levels. Additionally, EfficientNet-B2 was trained on full-view CT data from 17 545 patients for automated hemorrhage detection. Detection performance was evaluated using the area under the receiver operating characteristic curve (AUC), with differences assessed using the DeLong test, along with confusion matrices. A total variation (TV) postprocessing approach, commonly applied to sparse-view CT, served as the basis for comparison. A Bonferroni-corrected significance level of .001/6 = .00017 was used to accommodate for multiple hypotheses testing. Results Images with U-Net postprocessing were better than unprocessed and TV-processed images with respect to image quality and automated hemorrhage detection. With U-Net postprocessing, the number of views could be reduced from 4096 (AUC: 0.97 [95% CI: 0.97, 0.98]) to 512 (0.97 [95% CI: 0.97, 0.98], P < .00017) and to 256 views (0.97 [95% CI: 0.96, 0.97], P < .00017) with a minimal decrease in hemorrhage detection performance. This was accompanied by mean structural similarity index measure increases of 0.0210 (95% CI: 0.0210, 0.0211) and 0.0560 (95% CI: 0.0559, 0.0560) relative to unprocessed images. Conclusion U-Net-based artifact reduction substantially enhanced automated hemorrhage detection in sparse-view cranial CT scans. Keywords: CT, Head/Neck, Hemorrhage, Diagnosis, Supervised Learning Supplemental material is available for this article. © RSNA, 2024.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过基于 U-Net 的伪影消除技术改进稀疏视图 CT 中的出血自动检测功能
"刚刚接受 "的论文经过同行评审,已被接受在《放射学》上发表:人工智能》上发表。这篇文章在以最终版本发表之前,还将经过校对、排版和校对审核。请注意,在制作最终校对稿的过程中,可能会发现一些错误,从而影响文章内容。目的 探讨在稀疏视图头颅 CT 扫描中基于深度学习减少伪影的潜在好处及其对自动出血检测的影响。材料与方法 在这项回顾性研究中,对 U-Net 进行了训练,以减少从公共数据集中获取的 3000 名患者的模拟稀疏视图头颅 CT 扫描中的伪影,并以不同的稀疏视图水平进行重建。此外,EfficientNetB2 还在来自 17,545 名患者的全视角 CT 数据上进行了自动出血检测训练。检测性能采用接收器操作者特征曲线下面积(AUC)进行评估,差异采用 DeLong 检验和混淆矩阵进行评估。通常应用于稀疏视图的总变异(TV)后处理方法是比较的基础。采用 Bonferronic 校正显著性水平 0.001/6 = 0.00017,以适应多重假设检验。结果 在图像质量和出血自动检测方面,经过 U-Net 后处理的图像优于未经处理的图像和经过 TV 处理的图像。通过 U-Net 后处理,视图数量可从 4096 个(AUC:0.97;95% CI:0.97-0.98)减少到 512 个(0.97;0.97-0.98;P < .00017)和 256 个视图(0.97;0.96-0.97;P < .00017),而出血检测性能下降极小。与未经处理的图像相比,平均结构相似性指数分别增加了 0.0210 (95% CI: 0.0210-0.0211) 和 0.0560 (95% CI: 0.0559-0.0560) 。结论 基于 U-Net 的伪影去除技术大大提高了稀疏视角头颅 CT 中出血的自动检测能力。©RSNA, 2024.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
期刊最新文献
Integrated Deep Learning Model for the Detection, Segmentation, and Morphologic Analysis of Intracranial Aneurysms Using CT Angiography. RSNA 2023 Abdominal Trauma AI Challenge Review and Outcomes Analysis. SCIseg: Automatic Segmentation of Intramedullary Lesions in Spinal Cord Injury on T2-weighted MRI Scans. Combining Biology-based and MRI Data-driven Modeling to Predict Response to Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer. Optimizing Performance of Transformer-based Models for Fetal Brain MR Image Segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1