An open auscultation dataset for machine learning-based respiratory diagnosis studies.

IF 1.2 Q3 ACOUSTICS JASA express letters Pub Date : 2024-05-01 DOI:10.1121/10.0025851
Guanyu Zhou, Chengjian Liu, Xiaoguang Li, Sicong Liang, Ruichen Wang, Xun Huang
{"title":"An open auscultation dataset for machine learning-based respiratory diagnosis studies.","authors":"Guanyu Zhou, Chengjian Liu, Xiaoguang Li, Sicong Liang, Ruichen Wang, Xun Huang","doi":"10.1121/10.0025851","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning enabled auscultating diagnosis can provide promising solutions especially for prescreening purposes. The bottleneck for its potential success is that high-quality datasets for training are still scarce. An open auscultation dataset that consists of samples and annotations from patients and healthy individuals is established in this work for the respiratory diagnosis studies with machine learning, which is of both scientific importance and practical potential. A machine learning approach is examined to showcase the use of this new dataset for lung sound classifications with different diseases. The open dataset is available to the public online.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"4 5","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0025851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning enabled auscultating diagnosis can provide promising solutions especially for prescreening purposes. The bottleneck for its potential success is that high-quality datasets for training are still scarce. An open auscultation dataset that consists of samples and annotations from patients and healthy individuals is established in this work for the respiratory diagnosis studies with machine learning, which is of both scientific importance and practical potential. A machine learning approach is examined to showcase the use of this new dataset for lung sound classifications with different diseases. The open dataset is available to the public online.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于基于机器学习的呼吸诊断研究的开放式听诊数据集。
机器学习支持的听诊诊断可提供有前景的解决方案,尤其是用于预筛选目的。其潜在成功的瓶颈在于用于训练的高质量数据集仍然稀缺。本研究建立了一个开放的听诊数据集,该数据集由病人和健康人的样本和注释组成,用于机器学习的呼吸诊断研究,具有重要的科学意义和实用潜力。本文研究了一种机器学习方法,以展示如何将这一新数据集用于不同疾病的肺部听诊分类。该开放数据集可供公众在线使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
The JIBO Kids Corpus: A speech dataset of child-robot interactions in a classroom environment. The perceptual distinctiveness of the [n-l] contrast in different vowel and tonal contexts. Ambient noise source characterization using spectral, coherence, and directionality estimates at Kongsfjorden. Speaker adaptation using codebook integrated deep neural networks for speech enhancement. Fundamental frequency predominantly drives talker differences in auditory brainstem responses to continuous speech.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1