{"title":"Alternating size field optimizing and parameterization domain CAD model remeshing","authors":"Shiyi Wang , Bochun Yang , Hujun Bao , Jin Huang","doi":"10.1016/j.cagd.2024.102294","DOIUrl":null,"url":null,"abstract":"<div><p>Tessellating CAD models into triangular meshes is a long-lasting problem. Size field is widely used to accommodate varieties of requirements in remeshing, and it is usually discretized and optimized on a prescribed background mesh and kept constant in the subsequent remeshing procedure. Instead, we propose optimizing the size field on the current mesh, then using it as guidance to generate the next mesh. This simple strategy eliminates the need of building a proper background mesh and greatly simplifies the size field query. For better quality and convergence, we also propose a geodesic distance based initialization and adaptive re-weighting strategy in size field optimization. Similar to existing methods, we also view the remeshing of a CAD model as the remeshing of its parameterization domain, which guarantees that all the vertices lie exactly on the CAD surfaces and eliminates the need for costly and error-prone projection operations. However, for vertex smoothing which is important for mesh quality, we carefully optimize the vertex's location in the parameterization domain for the optimal Delaunay triangulation condition, along with a high-order cubature scheme for better accuracy. Experiments show that our method is fast, accurate and controllable. Compared with state-of-the-art methods, our approach is fast and usually generates meshes with smaller Hausdorff error, larger minimal angle with a comparable number of triangles.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102294"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624000281","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Tessellating CAD models into triangular meshes is a long-lasting problem. Size field is widely used to accommodate varieties of requirements in remeshing, and it is usually discretized and optimized on a prescribed background mesh and kept constant in the subsequent remeshing procedure. Instead, we propose optimizing the size field on the current mesh, then using it as guidance to generate the next mesh. This simple strategy eliminates the need of building a proper background mesh and greatly simplifies the size field query. For better quality and convergence, we also propose a geodesic distance based initialization and adaptive re-weighting strategy in size field optimization. Similar to existing methods, we also view the remeshing of a CAD model as the remeshing of its parameterization domain, which guarantees that all the vertices lie exactly on the CAD surfaces and eliminates the need for costly and error-prone projection operations. However, for vertex smoothing which is important for mesh quality, we carefully optimize the vertex's location in the parameterization domain for the optimal Delaunay triangulation condition, along with a high-order cubature scheme for better accuracy. Experiments show that our method is fast, accurate and controllable. Compared with state-of-the-art methods, our approach is fast and usually generates meshes with smaller Hausdorff error, larger minimal angle with a comparable number of triangles.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.