A learning system-based soft multiple linear regression model

Gholamreza Hesamian , Faezeh Torkian , Arne Johannssen , Nataliya Chukhrova
{"title":"A learning system-based soft multiple linear regression model","authors":"Gholamreza Hesamian ,&nbsp;Faezeh Torkian ,&nbsp;Arne Johannssen ,&nbsp;Nataliya Chukhrova","doi":"10.1016/j.iswa.2024.200378","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning applied to regression models offers powerful mathematical tools for predicting responses based on one or more predictor variables. This paper extends the concept of multiple linear regression by implementing a learning system and incorporating both fuzzy predictors and fuzzy responses. To estimate the unknown parameters of this soft regression model, the approach involves minimizing the absolute distance between two lines under three constraints related to the absolute error distance between observed data and their respective predicted lines. A thorough comparative analysis is conducted, showcasing the practical applicability and superiority of the proposed soft multiple linear regression model. The effectiveness of the model is demonstrated through a comprehensive examination involving simulation studies and real-life application examples.</p></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"22 ","pages":"Article 200378"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266730532400053X/pdfft?md5=8eb7bc998874d64b464285b08379fed3&pid=1-s2.0-S266730532400053X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266730532400053X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning applied to regression models offers powerful mathematical tools for predicting responses based on one or more predictor variables. This paper extends the concept of multiple linear regression by implementing a learning system and incorporating both fuzzy predictors and fuzzy responses. To estimate the unknown parameters of this soft regression model, the approach involves minimizing the absolute distance between two lines under three constraints related to the absolute error distance between observed data and their respective predicted lines. A thorough comparative analysis is conducted, showcasing the practical applicability and superiority of the proposed soft multiple linear regression model. The effectiveness of the model is demonstrated through a comprehensive examination involving simulation studies and real-life application examples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于学习系统的软多元线性回归模型
应用于回归模型的机器学习为基于一个或多个预测变量预测反应提供了强大的数学工具。本文扩展了多元线性回归的概念,实施了一个学习系统,并纳入了模糊预测因子和模糊响应。为了估算这个软回归模型的未知参数,该方法涉及在与观测数据和各自预测线之间的绝对误差距离有关的三个约束条件下,最小化两条线之间的绝对距离。通过全面的比较分析,展示了所提出的软多元线性回归模型的实际应用性和优越性。通过模拟研究和实际应用实例的综合检验,证明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
期刊最新文献
MapReduce teaching learning based optimization algorithm for solving CEC-2013 LSGO benchmark Testsuit Intelligent gear decision method for vehicle automatic transmission system based on data mining Design and implementation of EventsKG for situational monitoring and security intelligence in India: An open-source intelligence gathering approach Ideological orientation and extremism detection in online social networking sites: A systematic review Multi-objective optimization of power networks integrating electric vehicles and wind energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1