Towards sustainable agriculture: Harnessing AI for global food security

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY Artificial Intelligence in Agriculture Pub Date : 2024-04-30 DOI:10.1016/j.aiia.2024.04.003
Dhananjay K. Pandey , Richa Mishra
{"title":"Towards sustainable agriculture: Harnessing AI for global food security","authors":"Dhananjay K. Pandey ,&nbsp;Richa Mishra","doi":"10.1016/j.aiia.2024.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>The issue of food security continues to be a prominent global concern, affecting a significant number of individuals who experience the adverse effects of hunger and malnutrition. The finding of a solution of this intricate issue necessitates the implementation of novel and paradigm-shifting methodologies in agriculture and food sector. In recent times, the domain of artificial intelligence (AI) has emerged as a potent tool capable of instigating a profound influence on the agriculture and food sectors. AI technologies provide significant advantages by optimizing crop cultivation practices, enabling the use of predictive modelling and precision agriculture techniques, and aiding efficient crop monitoring and disease identification. Additionally, AI has the potential to optimize supply chain operations, storage management, transportation systems, and quality assurance processes. It also tackles the problem of food loss and waste through post-harvest loss reduction, predictive analytics, and smart inventory management. This study highlights that how by utilizing the power of AI, we could transform the way we produce, distribute, and manage food, ultimately creating a more secure and sustainable future for all.</p></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"12 ","pages":"Pages 72-84"},"PeriodicalIF":8.2000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589721724000151/pdfft?md5=a9d0ed80991556893a392b3b0a4013c0&pid=1-s2.0-S2589721724000151-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721724000151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The issue of food security continues to be a prominent global concern, affecting a significant number of individuals who experience the adverse effects of hunger and malnutrition. The finding of a solution of this intricate issue necessitates the implementation of novel and paradigm-shifting methodologies in agriculture and food sector. In recent times, the domain of artificial intelligence (AI) has emerged as a potent tool capable of instigating a profound influence on the agriculture and food sectors. AI technologies provide significant advantages by optimizing crop cultivation practices, enabling the use of predictive modelling and precision agriculture techniques, and aiding efficient crop monitoring and disease identification. Additionally, AI has the potential to optimize supply chain operations, storage management, transportation systems, and quality assurance processes. It also tackles the problem of food loss and waste through post-harvest loss reduction, predictive analytics, and smart inventory management. This study highlights that how by utilizing the power of AI, we could transform the way we produce, distribute, and manage food, ultimately creating a more secure and sustainable future for all.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现可持续农业:利用人工智能促进全球粮食安全
粮食安全问题仍然是全球关注的一个突出问题,影响着大量遭受饥饿和营养不良不利影响的人。要解决这一错综复杂的问题,就必须在农业和粮食部门实施新颖的、改变模式的方法。近来,人工智能(AI)领域已成为能够对农业和粮食部门产生深远影响的有力工具。人工智能技术通过优化作物栽培方法、实现预测建模和精准农业技术的使用,以及协助高效的作物监测和疾病识别,提供了显著的优势。此外,人工智能还有可能优化供应链运作、仓储管理、运输系统和质量保证流程。它还可以通过减少收获后损失、预测分析和智能库存管理来解决粮食损失和浪费问题。这项研究强调,通过利用人工智能的力量,我们可以改变生产、分配和管理食品的方式,最终为所有人创造一个更安全、更可持续的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
Neural network architecture search enabled wide-deep learning (NAS-WD) for spatially heterogenous property awared chicken woody breast classification and hardness regression Utility-based regression and meta-learning techniques for modeling actual ET: Comparison to (METRIC-EEFLUX) model Detectability of multi-dimensional movement and behaviour in cattle using sensor data and machine learning algorithms: Study on a Charolais bull Estimating TYLCV resistance level using RGBD sensors in production greenhouse conditions Development of a cutting-edge ensemble pipeline for rapid and accurate diagnosis of plant leaf diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1