Spatial transcriptomics in health and disease

IF 28.6 1区 医学 Q1 UROLOGY & NEPHROLOGY Nature Reviews Nephrology Pub Date : 2024-05-08 DOI:10.1038/s41581-024-00841-1
Sanjay Jain, Michael T. Eadon
{"title":"Spatial transcriptomics in health and disease","authors":"Sanjay Jain, Michael T. Eadon","doi":"10.1038/s41581-024-00841-1","DOIUrl":null,"url":null,"abstract":"The ability to localize hundreds of macromolecules to discrete locations, structures and cell types in a tissue is a powerful approach to understand the cellular and spatial organization of an organ. Spatially resolved transcriptomic technologies enable mapping of transcripts at single-cell or near single-cell resolution in a multiplex manner. The rapid development of spatial transcriptomic technologies has accelerated the pace of discovery in several fields, including nephrology. Its application to preclinical models and human samples has provided spatial information about new cell types discovered by single-cell sequencing and new insights into the cell–cell interactions within neighbourhoods, and has improved our understanding of the changes that occur in response to injury. Integration of spatial transcriptomic technologies with other omics methods, such as proteomics and spatial epigenetics, will further facilitate the generation of comprehensive molecular atlases, and provide insights into the dynamic relationships of molecular components in homeostasis and disease. This Review provides an overview of current and emerging spatial transcriptomic methods, their applications and remaining challenges for the field. Spatially resolved transcriptomic technologies enable the mapping of transcripts at single-cell or near single-cell resolution in a multiplex manner. This Review describes current and emerging spatial transcriptomic methods, their applications of relevance to kidney biology and remaining challenges for the field.","PeriodicalId":19059,"journal":{"name":"Nature Reviews Nephrology","volume":"20 10","pages":"659-671"},"PeriodicalIF":28.6000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Nephrology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41581-024-00841-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The ability to localize hundreds of macromolecules to discrete locations, structures and cell types in a tissue is a powerful approach to understand the cellular and spatial organization of an organ. Spatially resolved transcriptomic technologies enable mapping of transcripts at single-cell or near single-cell resolution in a multiplex manner. The rapid development of spatial transcriptomic technologies has accelerated the pace of discovery in several fields, including nephrology. Its application to preclinical models and human samples has provided spatial information about new cell types discovered by single-cell sequencing and new insights into the cell–cell interactions within neighbourhoods, and has improved our understanding of the changes that occur in response to injury. Integration of spatial transcriptomic technologies with other omics methods, such as proteomics and spatial epigenetics, will further facilitate the generation of comprehensive molecular atlases, and provide insights into the dynamic relationships of molecular components in homeostasis and disease. This Review provides an overview of current and emerging spatial transcriptomic methods, their applications and remaining challenges for the field. Spatially resolved transcriptomic technologies enable the mapping of transcripts at single-cell or near single-cell resolution in a multiplex manner. This Review describes current and emerging spatial transcriptomic methods, their applications of relevance to kidney biology and remaining challenges for the field.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
健康和疾病中的空间转录组学
将数百种大分子定位到组织中的离散位置、结构和细胞类型的能力是了解器官的细胞和空间组织的有力方法。空间分辨转录本组技术能够以多重方式绘制单细胞或接近单细胞分辨率的转录本图谱。空间转录组技术的快速发展加快了包括肾脏病学在内的多个领域的发现步伐。空间转录组技术在临床前模型和人体样本中的应用提供了单细胞测序发现的新细胞类型的空间信息,以及对邻域内细胞-细胞相互作用的新认识,并提高了我们对损伤时发生的变化的理解。空间转录组技术与蛋白质组学和空间表观遗传学等其他全息方法的整合,将进一步促进综合分子图谱的生成,并为了解平衡和疾病中分子成分的动态关系提供见解。本综述概述了当前和新兴的空间转录组学方法、其应用以及该领域仍面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Reviews Nephrology
Nature Reviews Nephrology 医学-泌尿学与肾脏学
CiteScore
39.00
自引率
1.20%
发文量
127
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Nephrology aims to be the premier source of reviews and commentaries for the scientific communities it serves. It strives to publish authoritative, accessible articles. Articles are enhanced with clearly understandable figures, tables, and other display items. Nature Reviews Nephrology publishes Research Highlights, News & Views, Comments, Reviews, Perspectives, and Consensus Statements. The content is relevant to nephrologists and basic science researchers. The broad scope of the journal ensures that the work reaches the widest possible audience.
期刊最新文献
Immune–stromal interplay shapes kidney function in health and disease Consequence of microvascular inflammation in transplantation Contribution of APOL1 variants to CKD risk in West Africans Advancing gender equity to improve kidney care for women: a patient perspective Collagen formation, function and role in kidney disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1