Optimizing corrosion resistance of Fe35Ni20Cr12Mn28Al5 high-entropy alloy: synergistic effect of Mo inhibitor, Al content and cold rolling

IF 2.3 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Anti-corrosion Methods and Materials Pub Date : 2024-05-07 DOI:10.1108/acmm-12-2023-2937
Sally Elkatatny, Lamiaa Zaky, Walaa Abdelaziem, Aliaa Abdelfatah
{"title":"Optimizing corrosion resistance of Fe35Ni20Cr12Mn28Al5 high-entropy alloy: synergistic effect of Mo inhibitor, Al content and cold rolling","authors":"Sally Elkatatny, Lamiaa Zaky, Walaa Abdelaziem, Aliaa Abdelfatah","doi":"10.1108/acmm-12-2023-2937","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to investigate the corrosion behavior of cold-rolled Fe<sub>35</sub>Ni<sub>20</sub>C<sub>r12</sub>Mn<sub>(28-x)</sub>Al<sub>x</sub> high-entropy alloys (HEAs) using the potentiodynamic polarization technique in 1 M H<sub>2</sub>SO<sub>4</sub> acid. Additionally, the influence of molybdenum (Mo) additions as inhibitors and the effect of variations in cold rolling reduction ratios and Al content on corrosion behavior are examined.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Two cold rolling reduction ratios, namely, 50% (R50) and 90% (R90), were examined for the cold-rolled Fe<sub>35</sub>Ni<sub>20</sub>Cr<sub>12</sub>Mn<sub>28</sub>Al<sub>5</sub> (Al<sub>5</sub>) and Fe<sub>35</sub>Ni<sub>20</sub>Cr<sub>12</sub>Mn<sub>23</sub>Al<sub>10</sub> (Al<sub>10</sub>) HEAs. Mo inhibitor additions were introduced at varying concentrations of 0.3, 0.6 and 0.9 Wt.%. The potentiodynamic polarization technique was used to evaluate the corrosion rates (CRs) under different experimental conditions.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results indicate that the addition of 0.3 Wt.% Mo in 1 M H<sub>2</sub>SO<sub>4</sub> yielded the lowest CR for both R50 and R90, irrespective of the Al content in the HEAs. However, the highest CR was observed at 0.6 Wt.% Mo addition. Furthermore, increasing the concentration of Al resulted in a corresponding rise in the CR. Comparatively, the CR decreased significantly when the cold rolling reduction ratio increased from R50 to R90.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This research provides valuable insights into the intricate relationship between Mo inhibitors, cold rolling reduction ratio, Al content and the resulting corrosion behavior of Fe<sub>35</sub>Ni<sub>20</sub>Cr<sub>12</sub>Mn<sub>(28-x)</sub>Al<sub>x</sub> HEAs. The comprehensive analysis of corroded HEAs, including surface morphology, compositions and elemental distribution mapping, contributes to the understanding of the corrosion mechanisms and offers potential strategies for enhancing the corrosion behavior of HEAs.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"5 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-corrosion Methods and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/acmm-12-2023-2937","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

This study aims to investigate the corrosion behavior of cold-rolled Fe35Ni20Cr12Mn(28-x)Alx high-entropy alloys (HEAs) using the potentiodynamic polarization technique in 1 M H2SO4 acid. Additionally, the influence of molybdenum (Mo) additions as inhibitors and the effect of variations in cold rolling reduction ratios and Al content on corrosion behavior are examined.

Design/methodology/approach

Two cold rolling reduction ratios, namely, 50% (R50) and 90% (R90), were examined for the cold-rolled Fe35Ni20Cr12Mn28Al5 (Al5) and Fe35Ni20Cr12Mn23Al10 (Al10) HEAs. Mo inhibitor additions were introduced at varying concentrations of 0.3, 0.6 and 0.9 Wt.%. The potentiodynamic polarization technique was used to evaluate the corrosion rates (CRs) under different experimental conditions.

Findings

The results indicate that the addition of 0.3 Wt.% Mo in 1 M H2SO4 yielded the lowest CR for both R50 and R90, irrespective of the Al content in the HEAs. However, the highest CR was observed at 0.6 Wt.% Mo addition. Furthermore, increasing the concentration of Al resulted in a corresponding rise in the CR. Comparatively, the CR decreased significantly when the cold rolling reduction ratio increased from R50 to R90.

Originality/value

This research provides valuable insights into the intricate relationship between Mo inhibitors, cold rolling reduction ratio, Al content and the resulting corrosion behavior of Fe35Ni20Cr12Mn(28-x)Alx HEAs. The comprehensive analysis of corroded HEAs, including surface morphology, compositions and elemental distribution mapping, contributes to the understanding of the corrosion mechanisms and offers potential strategies for enhancing the corrosion behavior of HEAs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化 Fe35Ni20Cr12Mn28Al5 高熵合金的耐腐蚀性:Mo 抑制剂、Al 含量和冷轧的协同效应
目的 本研究旨在使用电位极化技术研究冷轧铁 35Ni20Cr12Mn(28-x)Alx 高熵合金 (HEA) 在 1 M H2SO4 酸中的腐蚀行为。此外,还研究了添加钼(Mo)作为抑制剂的影响,以及冷轧还原比和铝含量的变化对腐蚀行为的影响。设计/方法/途径研究了冷轧 Fe35Ni20Cr12Mn28Al5 (Al5) 和 Fe35Ni20Cr12Mn23Al10 (Al10) HEA 的两种冷轧还原比,即 50% (R50) 和 90% (R90)。钼抑制剂的添加浓度分别为 0.3、0.6 和 0.9 Wt.%。结果表明,无论 HEA 中的铝含量如何,在 1 M H2SO4 中添加 0.3 Wt.% 的 Mo 对 R50 和 R90 的腐蚀速率(CR)都是最低的。然而,在添加 0.6 重量%的钼时,观察到的 CR 最高。此外,增加铝的浓度也会相应提高 CR。相比之下,当冷轧还原比从 R50 增加到 R90 时,CR 明显降低。这项研究为了解 Mo 抑制剂、冷轧还原比、铝含量和 Fe35Ni20Cr12Mn(28-x)Alx HEAs 腐蚀行为之间的复杂关系提供了宝贵的见解。对腐蚀的 HEA 进行的全面分析,包括表面形貌、成分和元素分布图的绘制,有助于对腐蚀机理的理解,并为增强 HEA 的腐蚀行为提供了潜在的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Anti-corrosion Methods and Materials
Anti-corrosion Methods and Materials 工程技术-冶金工程
CiteScore
2.80
自引率
16.70%
发文量
61
审稿时长
13.5 months
期刊介绍: Anti-Corrosion Methods and Materials publishes a broad coverage of the materials and techniques employed in corrosion prevention. Coverage is essentially of a practical nature and designed to be of material benefit to those working in the field. Proven applications are covered together with company news and new product information. Anti-Corrosion Methods and Materials now also includes research articles that reflect the most interesting and strategically important research and development activities from around the world. Every year, industry pays a massive and rising cost for its corrosion problems. Research and development into new materials, processes and initiatives to combat this loss is increasing, and new findings are constantly coming to light which can help to beat corrosion problems throughout industry. This journal uniquely focuses on these exciting developments to make essential reading for anyone aiming to regain profits lost through corrosion difficulties. • New methods, materials and software • New developments in research and industry • Stainless steels • Protection of structural steelwork • Industry update, conference news, dates and events • Environmental issues • Health & safety, including EC regulations • Corrosion monitoring and plant health assessment • The latest equipment and processes • Corrosion cost and corrosion risk management.
期刊最新文献
Effect of graphene on mechanical and anti-corrosion properties of TiO2-SiO2 sol-gel coating Enhancing the corrosion resistance of a novel bio-compatible Mg-1Zn-0.45Ca alloy in simulated body fluid by a phosphate treated PEO coating A case study: anti-corrosion performances of plasma sprayed AT13 coatings on CrZrCu thin wall cylinder with adjusted parameters for controlling deformation A highly efficient method for characterizing the kinetics of hydrogen evolution reaction Research of two kinds of PANI@semiconductor based photocathodic coating corrosion protection effect and mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1