Mineral Forms of Tungsten at the Porokhovskoe and Yugo-Konevskoe Deposits (Southern Urals)

IF 0.8 4区 地球科学 Q3 GEOLOGY Geology of Ore Deposits Pub Date : 2024-03-06 DOI:10.1134/s1075701523090064
D. A. Rogov, E. V. Belogub, K. A. Novoselov, M. A. Rassomakhin, R. R. Irmakov, A. E. Chugaev
{"title":"Mineral Forms of Tungsten at the Porokhovskoe and Yugo-Konevskoe Deposits (Southern Urals)","authors":"D. A. Rogov, E. V. Belogub, K. A. Novoselov, M. A. Rassomakhin, R. R. Irmakov, A. E. Chugaev","doi":"10.1134/s1075701523090064","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Ore hand specimens and technological ore samples from the greisen-type Porokhovskoe and Yugo-Konevskoe tungsten deposits in the Southern Urals were studied. The major tungsten minerals in primary ores of both deposits are hübnerite and scheelite. Secondary and accessory minerals are pyrite, chalcopyrite and molybdenite; rare minerals are sphalerite, galena, bismuthinite, aikinite, unidentified Bi chalcogenides and sulfosalts, magnetite, rutile, ilmenite, titanite, and columbite. Veins are mainly composed by quartz–muscovite aggregate with secondary (calcite, dolomite, and fluorite), minor (chlorite and amphibole), and accessory (zircon, apatite, and uraninite). No distinct zonation in the distribution pattern of wolframite with varying Fe content relative to the Yugo-Konevsky granite pluton is identified. However, wolframites from the Northern area of the Porokhovskoe deposit are enriched in Fe compared to those from the Central area and Yugo-Konevskoe deposit. Along with through vein wolframite and scheelite, the oxidized ores also contain Fe and Mn oxyhydroxides, malachite, pyromorphite, and bromargyrite. Tungsten enters the composition of Mn and Fe oxyhydroxides, which replace wolframite and less often sulfides. The WO<sub>3</sub> content in pseudomorphs of Mn and Fe oxyhydroxides after hübnerite reaches 18 wt %. Single grains of stolzite and russellite are found. According to the results of phase chemical analysis of technological samples, the amount of tungstite in oxidized ores is minor. Due to this, all ores of both deposits can be ascribed to primary technological type.</p>","PeriodicalId":12719,"journal":{"name":"Geology of Ore Deposits","volume":"27 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology of Ore Deposits","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s1075701523090064","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ore hand specimens and technological ore samples from the greisen-type Porokhovskoe and Yugo-Konevskoe tungsten deposits in the Southern Urals were studied. The major tungsten minerals in primary ores of both deposits are hübnerite and scheelite. Secondary and accessory minerals are pyrite, chalcopyrite and molybdenite; rare minerals are sphalerite, galena, bismuthinite, aikinite, unidentified Bi chalcogenides and sulfosalts, magnetite, rutile, ilmenite, titanite, and columbite. Veins are mainly composed by quartz–muscovite aggregate with secondary (calcite, dolomite, and fluorite), minor (chlorite and amphibole), and accessory (zircon, apatite, and uraninite). No distinct zonation in the distribution pattern of wolframite with varying Fe content relative to the Yugo-Konevsky granite pluton is identified. However, wolframites from the Northern area of the Porokhovskoe deposit are enriched in Fe compared to those from the Central area and Yugo-Konevskoe deposit. Along with through vein wolframite and scheelite, the oxidized ores also contain Fe and Mn oxyhydroxides, malachite, pyromorphite, and bromargyrite. Tungsten enters the composition of Mn and Fe oxyhydroxides, which replace wolframite and less often sulfides. The WO3 content in pseudomorphs of Mn and Fe oxyhydroxides after hübnerite reaches 18 wt %. Single grains of stolzite and russellite are found. According to the results of phase chemical analysis of technological samples, the amount of tungstite in oxidized ores is minor. Due to this, all ores of both deposits can be ascribed to primary technological type.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
波罗霍夫斯科和尤戈-科涅夫斯科矿床(南乌拉尔)的钨矿物形态
摘要研究了南乌拉尔地区绿森型Porokhovskoe和Yugo-Konevskoe钨矿床的手工标本和技术矿石样本。这两个矿床原生矿石中的主要钨矿物是白钨矿和白钨矿。次生和附属矿物为黄铁矿、黄铜矿和辉钼矿;稀有矿物为闪锌矿、方铅矿、铋矿、黝帘石、不明铋瑀和硫化物、磁铁矿、金红石、钛铁矿、榍石和铌铁矿。矿脉主要由石英-黑云母集合体组成,次生(方解石、白云石和萤石)、少量(绿泥石和闪石)和附属(锆石、磷灰石和铀矿石)。与 Yugo-Konevsky 花岗岩岩体相比,在不同铁含量的黑钨矿分布模式中没有发现明显的分带。不过,与中部地区和 Yugo-Konevskoe 矿床的黑钨矿相比,Porokhovskoe 矿床北部地区的黑钨矿富含铁。除了透脉黑钨矿和白钨矿,氧化矿石中还含有铁和锰氧氢氧化物、孔雀石、黄铁矿和溴钨矿。钨进入锰和铁氧氢氧化物的成分,取代黑钨矿和较少见的硫化物。在锰和铁氧氢氧化物的假象中,WO3 含量达到 18 wt %。此外,还发现了单粒的 stolzite 和 russellite。根据技术样本的相化学分析结果,氧化矿石中的钨矿量很少。因此,这两个矿床的所有矿石都可以归为原生技术类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geology of Ore Deposits
Geology of Ore Deposits 地学-地质学
CiteScore
1.10
自引率
14.30%
发文量
24
审稿时长
6-12 weeks
期刊介绍: Geology of Ore Deposits is a periodical covering the topic of metallic and nonmetallic mineral deposits, their formation conditions, and spatial and temporal distribution. The journal publishes original scientific articles and reviews on a wide range of problems in theoretical and applied geology. The journal focuses on the following problems: deep geological structure and geodynamic environment of ore formation; distribution pattern of metallogenic zones and mineral deposits; geology and formation environment of large and unique metallic and nonmetallic deposits; mineralogy of metallic and nonmetallic deposits; physicochemical and isotopic characteristics and geochemical environment of ore deposition; evolution of ore-forming systems; radiogeology and radioecology, economic problems in exploring, developing, and mining of ore commodities.
期刊最新文献
Gold Rush as it Happens in Minas Gerais, Brazil: Geological Reconnaissance and Origin of Gold Nuggets Genetic Classification of Bauxites of Futa Jallon-Mandingo Province (West Africa) by Textural and Structural Features Chemical Mapping of Trace Elements in Pyrite Provides Insight into Mineralizing Processes: the Example of the Neoarchean Cu–Au Porphyry System of the Chibougamau Area, Canada The First Results of a Study of Large Diamonds from Industrial Deposits of Yakutia Hydrothermal–Metasomatic and Metamorphic Formations of the Olympiada Gold-Ore Deposit (Yenisei Ridge): New Data on Their Composition and Mineralogical, Petrographic, and Geochemical Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1