A look-up table protocol for calibrating standing SAW acoustofluidics

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Microfluidics and Nanofluidics Pub Date : 2024-05-05 DOI:10.1007/s10404-024-02729-9
Zixing Liu, Haixiang Zheng, Qinran Wei, Zeyi Wang, Yu Zhang, Dong Zhang, Xiasheng Guo
{"title":"A look-up table protocol for calibrating standing SAW acoustofluidics","authors":"Zixing Liu,&nbsp;Haixiang Zheng,&nbsp;Qinran Wei,&nbsp;Zeyi Wang,&nbsp;Yu Zhang,&nbsp;Dong Zhang,&nbsp;Xiasheng Guo","doi":"10.1007/s10404-024-02729-9","DOIUrl":null,"url":null,"abstract":"<div><p>The acoustic radiation force (ARF) acting on particles measures the performance of microfluidic devices driven by standing surface acoustic waves (SSAWs). However, existing ARF calibration techniques rely on image post-processing or additional equipment. This work proposes a look-up table method to determine the ARF by examining the particle acoustophoresis mode in discrete phase-modulated SSAW fields, where the phase difference between the two counter-propagating SAWs is changed at fixed time intervals. Theoretical analysis indicates that particles in a straight channel migrate laterally either in the “locked” mode or the “drift” mode, while mode switching can be observed when the interval reaches a critical value highly dependent on the ARF amplitude. A look-up table can then be established for a given SSAW device. By observing the particle acoustophoresis modes at different phase-changing intervals, the ARF amplitude can be obtained from the easily determined critical interval. The procedure is demonstrated experimentally in an SSAW acoustofluidic device and compared with the particle tracking protocol to verify the former’s effectiveness and demonstrate its operational simplicity. Inspired by the established theory, a method to improve the efficiency of particle acoustophoresis by optimizing the phase-modulating parameters is also proposed.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02729-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The acoustic radiation force (ARF) acting on particles measures the performance of microfluidic devices driven by standing surface acoustic waves (SSAWs). However, existing ARF calibration techniques rely on image post-processing or additional equipment. This work proposes a look-up table method to determine the ARF by examining the particle acoustophoresis mode in discrete phase-modulated SSAW fields, where the phase difference between the two counter-propagating SAWs is changed at fixed time intervals. Theoretical analysis indicates that particles in a straight channel migrate laterally either in the “locked” mode or the “drift” mode, while mode switching can be observed when the interval reaches a critical value highly dependent on the ARF amplitude. A look-up table can then be established for a given SSAW device. By observing the particle acoustophoresis modes at different phase-changing intervals, the ARF amplitude can be obtained from the easily determined critical interval. The procedure is demonstrated experimentally in an SSAW acoustofluidic device and compared with the particle tracking protocol to verify the former’s effectiveness and demonstrate its operational simplicity. Inspired by the established theory, a method to improve the efficiency of particle acoustophoresis by optimizing the phase-modulating parameters is also proposed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于校准驻留声表面波声流体的查找表协议
作用在颗粒上的声辐射力(ARF)可以测量驻留表面声波(SAW)驱动的微流体设备的性能。然而,现有的 ARF 校准技术依赖于图像后处理或额外的设备。本研究提出了一种查找表方法,通过检查离散相位调制声表面波场中的颗粒声泳模式来确定 ARF,在离散相位调制声表面波场中,两个反向传播声表面波之间的相位差以固定的时间间隔发生变化。理论分析表明,直线通道中的粒子要么以 "锁定 "模式横向迁移,要么以 "漂移 "模式横向迁移,而当时间间隔达到与 ARF 振幅高度相关的临界值时,可以观察到模式切换。这样就可以为给定的 SSAW 设备建立一个查询表。通过观察不同相位变化间隔下的粒子声泳模式,可以从容易确定的临界间隔中获得 ARF 振幅。该程序在 SSAW 声流体设备中进行了实验演示,并与粒子跟踪协议进行了比较,以验证前者的有效性并证明其操作简便性。受已建立的理论启发,还提出了一种通过优化相位调节参数来提高粒子声泳效率的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
期刊最新文献
High throughput cell mechanotyping of cell response to cytoskeletal modulations using a microfluidic cell deformation system High-throughput separation of microalgae on a runway-shaped channel with ordered semicircular micro-obstacles Future electrodes for sepsis detection: digital microfluidic biosensors from plant waste Visualizing conformance control mechanisms in high-temperature reservoirs: a microfluidic analysis of Pickering emulsified gel systems Exploring fluid flow in microchannels with branching and variable constrictions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1