Qigao Han, Yaqing Guo, Fuhe Wang, Xuechun Lou, Fengqian Wang, Jun Zhong, Jinqiao Du, Jie Tian, Weixin Zhang, Shun Tang, Shijie Cheng, Yuancheng Cao
{"title":"Interfacial modulation of nano Li7La3Zr2O12 composite electrolytes prepared by solvent-free method","authors":"Qigao Han, Yaqing Guo, Fuhe Wang, Xuechun Lou, Fengqian Wang, Jun Zhong, Jinqiao Du, Jie Tian, Weixin Zhang, Shun Tang, Shijie Cheng, Yuancheng Cao","doi":"10.1016/j.gee.2024.04.009","DOIUrl":null,"url":null,"abstract":"Solid-state batteries (SSBs) with high safety are promising for the energy fields, but the development has long been limited by machinability and interfacial problems. Hence, supporting, Nano LLZO CSEs are prepared with a at . The contents of Nano LLZO particles enable the Nano LLZO CSEs to maintain good while exhibiting a wide electrochemical window of and a . The mean modulus reaches 4376 MPa. Benefiting from the , the Li|Li symmetric batteries based on the Nano LLZO CSEs show benign at the current densities of , , and . In addition, the Li|LiFePO (LFP) SSBs achieve favorable he specific capacity reaches at rate, with a capacity retention of about . In the further tests of the LiNiCoMnO (NCM811) cathodes with higher energy density, the Nano LLZO CSEs also demonstrate good compatibility: the specific capacities of NCM811-based SSBs reach at rate, while the capacity retention is over . Furthermore, the verify the and the potential for application, which have a desirable prospect.","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"10 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.gee.2024.04.009","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solid-state batteries (SSBs) with high safety are promising for the energy fields, but the development has long been limited by machinability and interfacial problems. Hence, supporting, Nano LLZO CSEs are prepared with a at . The contents of Nano LLZO particles enable the Nano LLZO CSEs to maintain good while exhibiting a wide electrochemical window of and a . The mean modulus reaches 4376 MPa. Benefiting from the , the Li|Li symmetric batteries based on the Nano LLZO CSEs show benign at the current densities of , , and . In addition, the Li|LiFePO (LFP) SSBs achieve favorable he specific capacity reaches at rate, with a capacity retention of about . In the further tests of the LiNiCoMnO (NCM811) cathodes with higher energy density, the Nano LLZO CSEs also demonstrate good compatibility: the specific capacities of NCM811-based SSBs reach at rate, while the capacity retention is over . Furthermore, the verify the and the potential for application, which have a desirable prospect.
期刊介绍:
Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.