{"title":"The effect of NaCl concentration on impact-sliding fretting corrosion behavior of Inconel 690TT heat transfer tubes","authors":"Yinghong Li, Wei Tan, Wenjie Pei, Guorui Zhu","doi":"10.1108/acmm-02-2024-2965","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this paper is to investigate the effect of NaCl solution with different concentrations on impact-sliding fretting corrosion behavior of Inconel 690TT steam generator heat transfer tubes.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The optical 3D profiler was used to measure the wear profile and calculated the wear volume. Corrosion behavior was studied using open circuit potential monitoring and potentiodynamic polarization testing. The morphologies and elemental distributions of wear scars were analyzed using scanning electron microscopy and energy-dispersive spectroscopy. The synergism of wear and corrosion was analyzed according to the ASTM G119 standard.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The corrosion tendency reflected by OCP and the corrosion current calculated by Tafel both increased with the increase of NaCl concentration. The total volume loss of the material increased with concentration, and it was known from the synergism that the volume loss caused by corrosion-enhanced wear accounted for the largest proportion, while the wear-enhanced corrosion also made a greater contribution to volume loss than tangential fretting corrosion. Through the analysis of the material morphologies and synergism of wear and corrosion, the damage mechanism was elucidated.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The research findings can provide reference for impact-sliding fretting corrosion behavior of Inconel 690TT heat transfer tubes in NaCl solution with different concentrations.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"161 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-corrosion Methods and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/acmm-02-2024-2965","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The purpose of this paper is to investigate the effect of NaCl solution with different concentrations on impact-sliding fretting corrosion behavior of Inconel 690TT steam generator heat transfer tubes.
Design/methodology/approach
The optical 3D profiler was used to measure the wear profile and calculated the wear volume. Corrosion behavior was studied using open circuit potential monitoring and potentiodynamic polarization testing. The morphologies and elemental distributions of wear scars were analyzed using scanning electron microscopy and energy-dispersive spectroscopy. The synergism of wear and corrosion was analyzed according to the ASTM G119 standard.
Findings
The corrosion tendency reflected by OCP and the corrosion current calculated by Tafel both increased with the increase of NaCl concentration. The total volume loss of the material increased with concentration, and it was known from the synergism that the volume loss caused by corrosion-enhanced wear accounted for the largest proportion, while the wear-enhanced corrosion also made a greater contribution to volume loss than tangential fretting corrosion. Through the analysis of the material morphologies and synergism of wear and corrosion, the damage mechanism was elucidated.
Originality/value
The research findings can provide reference for impact-sliding fretting corrosion behavior of Inconel 690TT heat transfer tubes in NaCl solution with different concentrations.
期刊介绍:
Anti-Corrosion Methods and Materials publishes a broad coverage of the materials and techniques employed in corrosion prevention. Coverage is essentially of a practical nature and designed to be of material benefit to those working in the field. Proven applications are covered together with company news and new product information. Anti-Corrosion Methods and Materials now also includes research articles that reflect the most interesting and strategically important research and development activities from around the world.
Every year, industry pays a massive and rising cost for its corrosion problems. Research and development into new materials, processes and initiatives to combat this loss is increasing, and new findings are constantly coming to light which can help to beat corrosion problems throughout industry. This journal uniquely focuses on these exciting developments to make essential reading for anyone aiming to regain profits lost through corrosion difficulties.
• New methods, materials and software
• New developments in research and industry
• Stainless steels
• Protection of structural steelwork
• Industry update, conference news, dates and events
• Environmental issues
• Health & safety, including EC regulations
• Corrosion monitoring and plant health assessment
• The latest equipment and processes
• Corrosion cost and corrosion risk management.