E. Y. Lapushkina, V. P. Sivtsev, I. V. Kovalev, M. P. Popov, A. P. Nemudry
{"title":"Optimization of the BSCFM5-Based Cathode Layer in the Microtubular Solid-Oxide Fuel Cells and the Study of Its Effect on the Power Characteristics","authors":"E. Y. Lapushkina, V. P. Sivtsev, I. V. Kovalev, M. P. Popov, A. P. Nemudry","doi":"10.1134/S1023193524010063","DOIUrl":null,"url":null,"abstract":"<p>Among all types of solid oxide fuel cells, the microtubular design demonstrated increased resistance to thermal cycling and a high power density (from 300 to 1000 W/kg and higher). Currently, one of the basic problems is the choice of a material to be used as the cathode; other problems are associated with the microstructure just within the cathodic layer of the microtubular solid-oxide fuel cells. This work is aimed at the studying of the power characteristics of microtubular solid-oxide fuel cells using Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.75</sub>Fe<sub>0.2</sub>Mo<sub>0.05</sub>O<sub>3 – δ</sub> as a cathode material. A cathodic layer with a thickness of 65 µm, including 4 cathodic functional layers and 4 cathodic collecting ones, is optimal and allows reaching the power of a single microtubular solid-oxide fuel cell as high as 750–850 mW/cm<sup>2</sup>.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 1","pages":"50 - 56"},"PeriodicalIF":1.1000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1023193524010063","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Among all types of solid oxide fuel cells, the microtubular design demonstrated increased resistance to thermal cycling and a high power density (from 300 to 1000 W/kg and higher). Currently, one of the basic problems is the choice of a material to be used as the cathode; other problems are associated with the microstructure just within the cathodic layer of the microtubular solid-oxide fuel cells. This work is aimed at the studying of the power characteristics of microtubular solid-oxide fuel cells using Ba0.5Sr0.5Co0.75Fe0.2Mo0.05O3 – δ as a cathode material. A cathodic layer with a thickness of 65 µm, including 4 cathodic functional layers and 4 cathodic collecting ones, is optimal and allows reaching the power of a single microtubular solid-oxide fuel cell as high as 750–850 mW/cm2.
期刊介绍:
Russian Journal of Electrochemistry is a journal that covers all aspects of research in modern electrochemistry. The journal welcomes submissions in English or Russian regardless of country and nationality of authors.