Mathematical Models of Modern Power Save Mechanisms in Wi-Fi Networks

IF 0.4 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Communications Technology and Electronics Pub Date : 2024-03-07 DOI:10.1134/s106422692314005x
D. V. Bankov, A. I. Lyakhov, E. A. Stepanova, E. M. Khorov
{"title":"Mathematical Models of Modern Power Save Mechanisms in Wi-Fi Networks","authors":"D. V. Bankov, A. I. Lyakhov, E. A. Stepanova, E. M. Khorov","doi":"10.1134/s106422692314005x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">\n<b>Abstract</b>—</h3><p>The Wi-Fi standard describes a number of power save mechanisms, the main idea of which is to periodically turn off the radio to save energy on channel listening. In modern Wi-Fi networks, such mechanisms include Target Wake Time (TWT) and Wake-Up Radio (WUR). Despite the fundamental differences between these mechanisms, they both use the activity period scheduling alternating with long intervals of turning off the main radio. Turning off the main radio not only saves energy, but also causes the loss of synchronization between the clocks of the power-saving stations with the access point clock because of the clock drift effect, which can negatively affect the efficiency of these mechanisms. In this paper, mathematical models of frame transmission from an access point to power-saving stations using TWT and WUR have been developed. The models consider the clock drift effect and allow us to evaluate the efficiency of the considered mechanisms in terms of average power consumption and average frame delivery delay.</p>","PeriodicalId":50229,"journal":{"name":"Journal of Communications Technology and Electronics","volume":"61 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications Technology and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1134/s106422692314005x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The Wi-Fi standard describes a number of power save mechanisms, the main idea of which is to periodically turn off the radio to save energy on channel listening. In modern Wi-Fi networks, such mechanisms include Target Wake Time (TWT) and Wake-Up Radio (WUR). Despite the fundamental differences between these mechanisms, they both use the activity period scheduling alternating with long intervals of turning off the main radio. Turning off the main radio not only saves energy, but also causes the loss of synchronization between the clocks of the power-saving stations with the access point clock because of the clock drift effect, which can negatively affect the efficiency of these mechanisms. In this paper, mathematical models of frame transmission from an access point to power-saving stations using TWT and WUR have been developed. The models consider the clock drift effect and allow us to evaluate the efficiency of the considered mechanisms in terms of average power consumption and average frame delivery delay.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wi-Fi 网络中现代省电机制的数学模型
摘要--Wi-Fi 标准描述了许多省电机制,其主要思想是定期关闭无线电以节省信道监听能源。在现代 Wi-Fi 网络中,这类机制包括目标唤醒时间(TWT)和唤醒无线电(WUR)。尽管这些机制之间存在本质区别,但它们都采用了活动期调度与长时间关闭主无线电交替的方式。关闭主无线电不仅可以节能,但由于时钟漂移效应,节电站的时钟会与接入点时钟失去同步,从而对这些机制的效率产生负面影响。本文建立了使用 TWT 和 WUR 从接入点向节电站传输帧的数学模型。这些模型考虑了时钟漂移效应,使我们能够从平均功耗和平均帧传输延迟的角度来评估所考虑的机制的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
170
审稿时长
10.5 months
期刊介绍: Journal of Communications Technology and Electronics is a journal that publishes articles on a broad spectrum of theoretical, fundamental, and applied issues of radio engineering, communication, and electron physics. It publishes original articles from the leading scientific and research centers. The journal covers all essential branches of electromagnetics, wave propagation theory, signal processing, transmission lines, telecommunications, physics of semiconductors, and physical processes in electron devices, as well as applications in biology, medicine, microelectronics, nanoelectronics, electron and ion emission, etc.
期刊最新文献
Minimization of Forecast Variance Using an Example of ETS Models Superpixel-Segmentation Based on Energy Minimization and Convolution with the Geodesic Distance Kernel Registration of Point Clouds in 3D Space Using Soft Alignment Mathematical Modeling of Network Nodes and Topologies of Modern Data Networks Occlusion Handling in Depth Estimation of a Scene from a Given Light Field Using a Geodesic Distance and the Principle of Symmetry of the View
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1