Excitation of mixed Rossby–gravity waves by wave–mean flow interactions on the sphere

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Quarterly Journal of the Royal Meteorological Society Pub Date : 2024-05-06 DOI:10.1002/qj.4742
Sándor István Mahó, Sergiy Vasylkevych, Nedjeljka Žagar
{"title":"Excitation of mixed Rossby–gravity waves by wave–mean flow interactions on the sphere","authors":"Sándor István Mahó, Sergiy Vasylkevych, Nedjeljka Žagar","doi":"10.1002/qj.4742","DOIUrl":null,"url":null,"abstract":"The equatorial mixed Rossby–gravity wave (MRGW) is an important contributor to tropical variability. Its excitation mechanism capable of explaining the observed MRGW variance peak at synoptic scales in the troposphere remains elusive. This study investigates wave–mean flow interactions as a generation process for the MRGWs using the TIGAR model, which employs Hough harmonics as the basis of spectral expansion on the sphere, thereby representing MRGWs as prognostic variables. Idealized numerical simulations reveal the interactions between waves emanating from a symmetric tropical heat source and an asymmetric subtropical zonal jet as an excitation mechanism for the MRGWs. The excited MRGWs have variance spectra resembling the observed MRGWs in the tropical troposphere. The mixed Rossby–gravity energy spectrum has a maximum at zonal wavenumbers –5 also in the case of an asymmetric forcing that generates MRGWs across large scales. Effects of wave–wave interactions appear of little importance for the MRGW growth compared with wave–mean flow interactions. Application of the zonal‐mean zonal wind profiles from ERA5 reaffirms the importance of the asymmetry of the zonal mean flow.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":"20 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4742","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The equatorial mixed Rossby–gravity wave (MRGW) is an important contributor to tropical variability. Its excitation mechanism capable of explaining the observed MRGW variance peak at synoptic scales in the troposphere remains elusive. This study investigates wave–mean flow interactions as a generation process for the MRGWs using the TIGAR model, which employs Hough harmonics as the basis of spectral expansion on the sphere, thereby representing MRGWs as prognostic variables. Idealized numerical simulations reveal the interactions between waves emanating from a symmetric tropical heat source and an asymmetric subtropical zonal jet as an excitation mechanism for the MRGWs. The excited MRGWs have variance spectra resembling the observed MRGWs in the tropical troposphere. The mixed Rossby–gravity energy spectrum has a maximum at zonal wavenumbers –5 also in the case of an asymmetric forcing that generates MRGWs across large scales. Effects of wave–wave interactions appear of little importance for the MRGW growth compared with wave–mean flow interactions. Application of the zonal‐mean zonal wind profiles from ERA5 reaffirms the importance of the asymmetry of the zonal mean flow.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
球面上波均流相互作用激发的混合罗斯比重力波
赤道混合罗斯比重力波(MRGW)是热带变率的一个重要因素。它的激发机制能否解释对流层中同步尺度上观测到的 MRGW 变率峰值,仍然是个未知数。本研究利用 TIGAR 模型研究了作为 MRGW 生成过程的波-均方流相互作用,该模型采用 Hough 谐波作为球面上频谱扩展的基础,从而将 MRGW 表示为预报变量。理想化的数值模拟揭示了对称热带热源和不对称副热带带状喷流所产生的波浪之间的相互作用是 MRGW 的激发机制。被激发的 MRGW 具有与热带对流层中观测到的 MRGW 相似的方差谱。罗斯比-重力混合能谱在带状波数处有一个最大值-5,在非对称强迫的情况下也会产生大尺度的 MRGW。与波-平均流相互作用相比,波-波相互作用对 MRGW 增长的影响似乎不大。应用ERA5的带状平均风剖面图再次证实了带状平均流不对称的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.80
自引率
4.50%
发文量
163
审稿时长
3-8 weeks
期刊介绍: The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues. The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.
期刊最新文献
Multivariate post‐processing of probabilistic sub‐seasonal weather regime forecasts Relationship between vertical variation of cloud microphysical properties and thickness of the entrainment interfacial layer in Physics of Stratocumulus Top stratocumulus clouds Characteristics and trends of Atlantic tropical cyclones that do and do not develop from African easterly waves Teleconnection and the Antarctic response to the Indian Ocean Dipole in CMIP5 and CMIP6 models First trial for the assimilation of radiance data from MTVZA‐GY on board the new Russian satellite meteor‐M N2‐2 in the CMA‐GFS 4D‐VAR system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1