Coronae–Sources of Young Volcanism on Venus: Topographic Features and Estimates of Productivity

IF 0.6 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS Solar System Research Pub Date : 2024-05-04 DOI:10.1134/s0038094624010039
E. N. Guseva, M. A. Ivanov
{"title":"Coronae–Sources of Young Volcanism on Venus: Topographic Features and Estimates of Productivity","authors":"E. N. Guseva, M. A. Ivanov","doi":"10.1134/s0038094624010039","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">\n<b>Abstract</b>—</h3><p>Our study of the spatial and genetic relationship between coronae and lobate plains allows us to draw two important conclusions. (1) About 17% of all volcanic coronae of Venus are sources (coronae–sources) of young lavas that form lobate plains of the Atlian period. A small portion of coronae–sources in the total population of coronae reflects the decrease in the formation rate of mantle diapirs. (2) The area of lobate plains associated with a particular corona and the area of the corona itself are negatively correlated. These relationships allow the existence of only two models for the final stages in the evolution of mantle diapirs. Having analyzed both of these models, we suppose that, during the Atlian period in the geologic history of Venus, either a single zone of neutral buoyancy existed or the lithosphere base was located at approximately the same level.</p>","PeriodicalId":778,"journal":{"name":"Solar System Research","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar System Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0038094624010039","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Our study of the spatial and genetic relationship between coronae and lobate plains allows us to draw two important conclusions. (1) About 17% of all volcanic coronae of Venus are sources (coronae–sources) of young lavas that form lobate plains of the Atlian period. A small portion of coronae–sources in the total population of coronae reflects the decrease in the formation rate of mantle diapirs. (2) The area of lobate plains associated with a particular corona and the area of the corona itself are negatively correlated. These relationships allow the existence of only two models for the final stages in the evolution of mantle diapirs. Having analyzed both of these models, we suppose that, during the Atlian period in the geologic history of Venus, either a single zone of neutral buoyancy existed or the lithosphere base was located at approximately the same level.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金星年轻火山的冕源:地形特征和生产力估算
摘要-我们对冠状火山和叶状平原之间的空间和遗传关系的研究得出了两个重要结论。(1)金星所有火山冠中约有17%是形成阿特里安时期裂片平原的年轻熔岩的来源(冠状源)。冠状源在所有冠状源中所占的比例很小,这反映了地幔斜长岩形成率的下降。(2)与特定日冕相关的叶状平原面积与日冕本身的面积呈负相关。根据这些关系,地幔斜长岩演化的最后阶段只有两种模式。在对这两种模式进行分析之后,我们认为,在金星地质史上的阿特里安时期,要么存在单一的中性浮力区,要么岩石圈基底大致位于同一水平面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar System Research
Solar System Research 地学天文-天文与天体物理
CiteScore
1.60
自引率
33.30%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Solar System Research publishes articles concerning the bodies of the Solar System, i.e., planets and their satellites, asteroids, comets, meteoric substances, and cosmic dust. The articles consider physics, dynamics and composition of these bodies, and techniques of their exploration. The journal addresses the problems of comparative planetology, physics of the planetary atmospheres and interiors, cosmochemistry, as well as planetary plasma environment and heliosphere, specifically those related to solar-planetary interactions. Attention is paid to studies of exoplanets and complex problems of the origin and evolution of planetary systems including the solar system, based on the results of astronomical observations, laboratory studies of meteorites, relevant theoretical approaches and mathematical modeling. Alongside with the original results of experimental and theoretical studies, the journal publishes scientific reviews in the field of planetary exploration, and notes on observational results.
期刊最新文献
Impact Craters on Earth with a Diameter of More than 200 km: Numerical Modeling Determining Optimal Parameters for Mercury’s Magnetospheric Current Systems from MESSENGER Observations Analysis of Water in the Regolith of the Moon Using the LASMA-LR Instrument During the Luna-27 Mission Propagation of Hydromagnetic Disturbance Waves and Gravitational Instability in a Magnetized Rotating Heat-Conducting Anisotropic Plasma On the Nature of Electrophone Phenomena Accompanying the Passage of Meteoric Bodies through the Earth’s Atmosphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1