Algorithm for the Reduction of the Pareto Set Using a Collection of Fuzzy Information Quanta

IF 0.4 Q4 INFORMATION SCIENCE & LIBRARY SCIENCE Scientific and Technical Information Processing Pub Date : 2024-03-07 DOI:10.3103/s0147688223060126
V. D. Noghin
{"title":"Algorithm for the Reduction of the Pareto Set Using a Collection of Fuzzy Information Quanta","authors":"V. D. Noghin","doi":"10.3103/s0147688223060126","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This paper deals with the multi-criteria problem of choice with a numerical vector function defined on a set of feasible variants. It is assumed that the decision maker uses a fuzzy preference relation for the choice process. Information on the preference relation is considered to be known in the form of a finite collection of fuzzy quanta. We formulate an algorithm to reduce the Pareto set in the multicriteria choice problem using the set of quanta in order to facilitate the final choice. A numerical example illustrates the operation of the algorithm.</p>","PeriodicalId":43962,"journal":{"name":"Scientific and Technical Information Processing","volume":"19 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and Technical Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0147688223060126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the multi-criteria problem of choice with a numerical vector function defined on a set of feasible variants. It is assumed that the decision maker uses a fuzzy preference relation for the choice process. Information on the preference relation is considered to be known in the form of a finite collection of fuzzy quanta. We formulate an algorithm to reduce the Pareto set in the multicriteria choice problem using the set of quanta in order to facilitate the final choice. A numerical example illustrates the operation of the algorithm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用模糊信息量集合还原帕累托集合的算法
摘要 本文讨论的是多标准选择问题,其数值向量函数定义在一组可行的变体上。假设决策者在选择过程中使用模糊偏好关系。关于偏好关系的信息被认为是以有限模糊量子集合的形式已知的。我们制定了一种算法,利用量子集合缩小多标准选择问题中的帕累托集合,以促进最终选择。一个数字示例说明了该算法的运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific and Technical Information Processing
Scientific and Technical Information Processing INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
1.00
自引率
42.90%
发文量
20
期刊介绍: Scientific and Technical Information Processing  is a refereed journal that covers all aspects of management and use of information technology in libraries and archives, information centres, and the information industry in general. Emphasis is on practical applications of new technologies and techniques for information analysis and processing.
期刊最新文献
Information Theories of Event Probability Estimation Webometric Assessment of Foreign Information Systems of Current Research Scientometric Analysis of Subjective Interest of Participants in a Scientific Event to Reports Presented and the Event As a Whole Information Resources of Professional Associations in the Field of World Politics and International Relations Bibliographic Database As a Tool for the Scientific Approach to the Solution of a Task of Socio-Economic Development: the Example of River Tourism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1