Comparison of the Methodology for Hypothesis Testing of the Independence of Two-Dimensional Random Variables Based on a Nonparametric Classifier

IF 0.4 Q4 INFORMATION SCIENCE & LIBRARY SCIENCE Scientific and Technical Information Processing Pub Date : 2024-03-07 DOI:10.3103/s0147688223060084
A. V. Lapko, V. A. Lapko, A. V. Bakhtina
{"title":"Comparison of the Methodology for Hypothesis Testing of the Independence of Two-Dimensional Random Variables Based on a Nonparametric Classifier","authors":"A. V. Lapko, V. A. Lapko, A. V. Bakhtina","doi":"10.3103/s0147688223060084","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract—</h3><p>The properties of a new method for the hypothesis testing of the independence of random variables based on the use of a nonparametric pattern recognition algorithm corresponding to the maximum likelihood criterion are considered. The estimation of the distribution laws in classes is carried out using the initial statistical data under the assumption of the independence and dependence of the analyzed random variables. Under these conditions, estimates of the probabilities of pattern recognition errors in classes are calculated. A decision is made on the independence or dependence of random variables according to their minimum value. The results of the proposed method are compared using the Pearson criterion and the Pearson, Spearman, and Kendall correlation coefficients. When implementing the Pearson criterion, the formula for optimal discretization of the range of values of a two-dimensional random variable is used. Their effectiveness in complicating the dependence between random variables and changing the volume of initial statistical data is studied using computational experiment.</p>","PeriodicalId":43962,"journal":{"name":"Scientific and Technical Information Processing","volume":"24 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and Technical Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0147688223060084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract—

The properties of a new method for the hypothesis testing of the independence of random variables based on the use of a nonparametric pattern recognition algorithm corresponding to the maximum likelihood criterion are considered. The estimation of the distribution laws in classes is carried out using the initial statistical data under the assumption of the independence and dependence of the analyzed random variables. Under these conditions, estimates of the probabilities of pattern recognition errors in classes are calculated. A decision is made on the independence or dependence of random variables according to their minimum value. The results of the proposed method are compared using the Pearson criterion and the Pearson, Spearman, and Kendall correlation coefficients. When implementing the Pearson criterion, the formula for optimal discretization of the range of values of a two-dimensional random variable is used. Their effectiveness in complicating the dependence between random variables and changing the volume of initial statistical data is studied using computational experiment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非参数分类器的二维随机变量独立性假设检验方法比较
内容提要 在使用与最大似然准则相对应的非参数模式识别算法的基础上,考虑了随机变量独立性假设检验新方法的特性。在所分析的随机变量具有独立性和依赖性的假设条件下,使用初始统计数据对类的分布规律进行估计。在这些条件下,计算出类别中模式识别错误概率的估计值。根据随机变量的最小值来决定其独立性或依赖性。使用皮尔逊准则和皮尔逊、斯皮尔曼和肯德尔相关系数对所提方法的结果进行比较。在使用皮尔逊准则时,使用了二维随机变量取值范围的最优离散化公式。通过计算实验研究了它们在使随机变量之间的依赖关系复杂化和改变初始统计数据量方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific and Technical Information Processing
Scientific and Technical Information Processing INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
1.00
自引率
42.90%
发文量
20
期刊介绍: Scientific and Technical Information Processing  is a refereed journal that covers all aspects of management and use of information technology in libraries and archives, information centres, and the information industry in general. Emphasis is on practical applications of new technologies and techniques for information analysis and processing.
期刊最新文献
Information Theories of Event Probability Estimation Webometric Assessment of Foreign Information Systems of Current Research Scientometric Analysis of Subjective Interest of Participants in a Scientific Event to Reports Presented and the Event As a Whole Information Resources of Professional Associations in the Field of World Politics and International Relations Bibliographic Database As a Tool for the Scientific Approach to the Solution of a Task of Socio-Economic Development: the Example of River Tourism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1