Reza Nejad Zare, Seyedsaeed Mehrabi-Kalajahi, Mikhail A. Varfolomeev, Sarvar Talipov, Almaz L. Zinnatullin, Kamil G. Sadikov, Farit G. Vagizov
{"title":"Improving the in-situ upgrading of extra heavy oil using metal-based oil-soluble catalysts through oxidation process for enhanced oil recovery","authors":"Reza Nejad Zare, Seyedsaeed Mehrabi-Kalajahi, Mikhail A. Varfolomeev, Sarvar Talipov, Almaz L. Zinnatullin, Kamil G. Sadikov, Farit G. Vagizov","doi":"10.1007/s13202-024-01813-8","DOIUrl":null,"url":null,"abstract":"<p>The demand for fuel from unconventional sources is increasing all over the world, however, there are still special and strict regulations regarding the methods of enhanced oil recovery as well as the content of the oil produced, including the amount of sulfur. In-situ combustion (ISC) is an attractive thermal method to enhance oil recovery and in-situ upgrading process. In this work, copper (II) oleate and copper (II) stearate were used for the oxidation of extra heavy oil with high sulfur content in the ISC process using a self-designed porous medium thermo-effect cell (PMTEC) and visual combustion tube. Using PMTEC the catalytic performances of the synthesized oil-soluble copper (II) oleate and copper (II) stearate and kinetic parameters such as activation energy using Ozawa-Flynn-Wall method were studied. The X-ray diffraction (XRD) and high-resolution field emission scanning electron microscopy were used to examine the characteristics of in-situ synthesized CuO nanoparticles during oxidation. As shown, the presence of oil-soluble copper (II) stearate and copper (II) oleate reduced oil viscosity from 9964 to 8000 and 6090 mPa˙s, respectively. Following ISC process in porous media in the presence of copper (II) oleate, the high sulfur extra heavy oil upgraded, and its sulfur content decreased from 10.33 to 6.79%. Additionally, SARA analysis revealed that asphaltene and resin content decreased in the presence of oil-soluble catalysts. During the oxidation reaction, homogeneous catalyst decomposed into nanoparticles, and heterogeneous catalyst is distributed uniformly in porous media and played an active role in the catalytic process. It should be noticed that, these kind of oil-soluble catalysts can be novel and highly potential candidates for initiation and oxidation of extra heavy oil in order to decrease the viscosity, enhanced oil recovery and production of the upgraded oil.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":"145 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Exploration and Production Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13202-024-01813-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The demand for fuel from unconventional sources is increasing all over the world, however, there are still special and strict regulations regarding the methods of enhanced oil recovery as well as the content of the oil produced, including the amount of sulfur. In-situ combustion (ISC) is an attractive thermal method to enhance oil recovery and in-situ upgrading process. In this work, copper (II) oleate and copper (II) stearate were used for the oxidation of extra heavy oil with high sulfur content in the ISC process using a self-designed porous medium thermo-effect cell (PMTEC) and visual combustion tube. Using PMTEC the catalytic performances of the synthesized oil-soluble copper (II) oleate and copper (II) stearate and kinetic parameters such as activation energy using Ozawa-Flynn-Wall method were studied. The X-ray diffraction (XRD) and high-resolution field emission scanning electron microscopy were used to examine the characteristics of in-situ synthesized CuO nanoparticles during oxidation. As shown, the presence of oil-soluble copper (II) stearate and copper (II) oleate reduced oil viscosity from 9964 to 8000 and 6090 mPa˙s, respectively. Following ISC process in porous media in the presence of copper (II) oleate, the high sulfur extra heavy oil upgraded, and its sulfur content decreased from 10.33 to 6.79%. Additionally, SARA analysis revealed that asphaltene and resin content decreased in the presence of oil-soluble catalysts. During the oxidation reaction, homogeneous catalyst decomposed into nanoparticles, and heterogeneous catalyst is distributed uniformly in porous media and played an active role in the catalytic process. It should be noticed that, these kind of oil-soluble catalysts can be novel and highly potential candidates for initiation and oxidation of extra heavy oil in order to decrease the viscosity, enhanced oil recovery and production of the upgraded oil.
期刊介绍:
The Journal of Petroleum Exploration and Production Technology is an international open access journal that publishes original and review articles as well as book reviews on leading edge studies in the field of petroleum engineering, petroleum geology and exploration geophysics and the implementation of related technologies to the development and management of oil and gas reservoirs from their discovery through their entire production cycle.
Focusing on:
Reservoir characterization and modeling
Unconventional oil and gas reservoirs
Geophysics: Acquisition and near surface
Geophysics Modeling and Imaging
Geophysics: Interpretation
Geophysics: Processing
Production Engineering
Formation Evaluation
Reservoir Management
Petroleum Geology
Enhanced Recovery
Geomechanics
Drilling
Completions
The Journal of Petroleum Exploration and Production Technology is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies