Application of graph models to the identification of transcriptomic oncometabolic pathways in human hepatocellular carcinoma

Sergio Barace, Eva Santamaría, Stefany Infante, Sara Arcelus, Jesús De la Fuente, Enrique Goñi, Ibon Tamayo, Idoia Ochoa, Miguel Sogbe, Bruno Sangro, Mikel Hernaez, Matías A. Ávila, Josepmaria Argemi
{"title":"Application of graph models to the identification of transcriptomic oncometabolic pathways in human hepatocellular carcinoma","authors":"Sergio Barace, Eva Santamaría, Stefany Infante, Sara Arcelus, Jesús De la Fuente, Enrique Goñi, Ibon Tamayo, Idoia Ochoa, Miguel Sogbe, Bruno Sangro, Mikel Hernaez, Matías A. Ávila, Josepmaria Argemi","doi":"10.1101/2024.04.30.24306608","DOIUrl":null,"url":null,"abstract":"Whole tissue transcriptomic analyses have been helpful to characterize molecular subtypes of hepatocellular carcinoma (HCC). Metabolic subtypes of human HCC have been defined, yet whether these different metabolic classes are clinically relevant or derive in actionable cancer vulnerabilities is still an unanswered question. Publicly available gene sets or gene signatures have been used to infer functional changes through gene set enrichment methods. However, metabolism-related gene signatures are poorly coexpressed when applied to a biological context. Here, we apply a simple method to infer highly consistent signatures using graph models. Using The Cancer Genome Atlas Liver Hepatocellular cohort (LIHC), we describe the main metabolic clusters and their relationship with commonly used molecular classes, and with the presence of TP53 or CTNNB1 driver mutations. We find similar results in our validation cohort, the LIRI-JP cohort. We describe how previously described metabolic subtypes could not have therapeutic relevance due to their overall downregulation when compared to non-tumoral liver, and identify N-Glycan, Mevalonate and Sphingolipid biosynthetic pathways as the hallmark of the oncogenic shift of the use of Acetyl-coenzyme A in HCC metabolism. Finally, using DepMap data, we demonstrate metabolic vulnerabilities in HCC cell lines.","PeriodicalId":501258,"journal":{"name":"medRxiv - Gastroenterology","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Gastroenterology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.04.30.24306608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Whole tissue transcriptomic analyses have been helpful to characterize molecular subtypes of hepatocellular carcinoma (HCC). Metabolic subtypes of human HCC have been defined, yet whether these different metabolic classes are clinically relevant or derive in actionable cancer vulnerabilities is still an unanswered question. Publicly available gene sets or gene signatures have been used to infer functional changes through gene set enrichment methods. However, metabolism-related gene signatures are poorly coexpressed when applied to a biological context. Here, we apply a simple method to infer highly consistent signatures using graph models. Using The Cancer Genome Atlas Liver Hepatocellular cohort (LIHC), we describe the main metabolic clusters and their relationship with commonly used molecular classes, and with the presence of TP53 or CTNNB1 driver mutations. We find similar results in our validation cohort, the LIRI-JP cohort. We describe how previously described metabolic subtypes could not have therapeutic relevance due to their overall downregulation when compared to non-tumoral liver, and identify N-Glycan, Mevalonate and Sphingolipid biosynthetic pathways as the hallmark of the oncogenic shift of the use of Acetyl-coenzyme A in HCC metabolism. Finally, using DepMap data, we demonstrate metabolic vulnerabilities in HCC cell lines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用图模型识别人类肝细胞癌的转录组代谢通路
全组织转录组分析有助于描述肝细胞癌(HCC)的分子亚型。人类 HCC 的代谢亚型已经确定,但这些不同的代谢类别是否与临床相关或衍生出可操作的癌症弱点仍是一个未解之谜。公开的基因组或基因特征已被用于通过基因组富集方法推断功能性变化。然而,当应用于生物环境时,与代谢相关的基因特征的共表达很差。在此,我们采用一种简单的方法,利用图模型推断出高度一致的特征。通过癌症基因组图谱肝肝细胞队列(LIHC),我们描述了主要的代谢群及其与常用分子类别的关系,以及与 TP53 或 CTNNB1 驱动基因突变存在的关系。我们在验证队列 LIRI-JP 中也发现了类似的结果。我们描述了之前描述的代谢亚型如何因其与非肿瘤肝脏相比整体下调而不具有治疗意义,并确定了N-糖、甲羟戊酸和鞘磷脂生物合成途径是HCC代谢中乙酰辅酶A的使用发生致癌转变的标志。最后,我们利用 DepMap 数据证明了 HCC 细胞系的代谢脆弱性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gut microbiome shifts in adolescents after sleeve gastrectomy with increased oral-associated taxa and pro-inflammatory potential Development of a machine-learning model for therapeutic efficacy prediction of preoperative treatment for esophageal cancer using single nucleotide variants of autophagy-related genes Why Symptoms Linger in Quiescent Crohn's Disease: Investigating the Impact of Sulfidogenic Microbes and Sulfur Metabolic Pathways Evidence that extracellular HSPB1 contributes to inflammation in alcohol-associated hepatitis Large language models outperform traditional natural language processing methods in extracting patient-reported outcomes in IBD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1