EOGT: Video Anomaly Detection with Enhanced Object Information and Global Temporal Dependency

IF 5.2 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Multimedia Computing Communications and Applications Pub Date : 2024-05-06 DOI:10.1145/3662185
Ruoyan Pi, Peng Wu, Xiangteng He, Yuxin Peng
{"title":"EOGT: Video Anomaly Detection with Enhanced Object Information and Global Temporal Dependency","authors":"Ruoyan Pi, Peng Wu, Xiangteng He, Yuxin Peng","doi":"10.1145/3662185","DOIUrl":null,"url":null,"abstract":"<p>Video anomaly detection (VAD) aims to identify events or scenes in videos that deviate from typical patterns. Existing approaches primarily focus on reconstructing or predicting frames to detect anomalies and have shown improved performance in recent years. However, they often depend highly on local spatio-temporal information and face the challenge of insufficient object feature modeling. To address the above issues, this paper proposes a video anomaly detection framework with <b>E</b>nhanced <b>O</b>bject Information and <b>G</b>lobal <b>T</b>emporal Dependencies <b>(EOGT)</b> and the main novelties are: (1) A <b>L</b>ocal <b>O</b>bject <b>A</b>nomaly <b>S</b>tream <b>(LOAS)</b> is proposed to extract local multimodal spatio-temporal anomaly features at the object level. LOAS integrates two modules: a <b>D</b>iffusion-based <b>O</b>bject <b>R</b>econstruction <b>N</b>etwork <b>(DORN)</b> with multimodal conditions detects anomalies with object RGB information, and an <b>O</b>bject <b>P</b>ose <b>A</b>nomaly Refiner <b>(OPA)</b> discovers anomalies with human pose information. (2) A <b>G</b>lobal <b>T</b>emporal <b>S</b>trengthening <b>S</b>tream <b>(GTSS)</b> with video-level temporal dependencies is proposed, which leverages video-level temporal dependencies to identify long-term and video-specific anomalies effectively. Both streams are jointly employed in EOGT to learn multimodal and multi-scale spatio-temporal anomaly features for VAD, and we finally fuse the anomaly features and scores to detect anomalies at the frame level. Extensive experiments are conducted to verify the performance of EOGT on three public datasets: ShanghaiTech Campus, CUHK Avenue, and UCSD Ped2.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"242 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3662185","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Video anomaly detection (VAD) aims to identify events or scenes in videos that deviate from typical patterns. Existing approaches primarily focus on reconstructing or predicting frames to detect anomalies and have shown improved performance in recent years. However, they often depend highly on local spatio-temporal information and face the challenge of insufficient object feature modeling. To address the above issues, this paper proposes a video anomaly detection framework with Enhanced Object Information and Global Temporal Dependencies (EOGT) and the main novelties are: (1) A Local Object Anomaly Stream (LOAS) is proposed to extract local multimodal spatio-temporal anomaly features at the object level. LOAS integrates two modules: a Diffusion-based Object Reconstruction Network (DORN) with multimodal conditions detects anomalies with object RGB information, and an Object Pose Anomaly Refiner (OPA) discovers anomalies with human pose information. (2) A Global Temporal Strengthening Stream (GTSS) with video-level temporal dependencies is proposed, which leverages video-level temporal dependencies to identify long-term and video-specific anomalies effectively. Both streams are jointly employed in EOGT to learn multimodal and multi-scale spatio-temporal anomaly features for VAD, and we finally fuse the anomaly features and scores to detect anomalies at the frame level. Extensive experiments are conducted to verify the performance of EOGT on three public datasets: ShanghaiTech Campus, CUHK Avenue, and UCSD Ped2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EOGT:利用增强对象信息和全局时空依赖性进行视频异常检测
视频异常检测(VAD)旨在识别视频中偏离典型模式的事件或场景。现有方法主要通过重建或预测帧来检测异常,近年来性能有所提高。然而,这些方法往往高度依赖局部时空信息,并面临对象特征建模不足的挑战。针对上述问题,本文提出了一种具有增强对象信息和全局时空依赖性(EOGT)的视频异常检测框架,其主要创新点包括(1) 提出了一种局部对象异常流(LOAS),用于提取对象层面的局部多模态时空异常特征。LOAS 集成了两个模块:具有多模态条件的基于扩散的物体重构网络(DORN)利用物体的 RGB 信息检测异常;物体姿态异常提炼器(OPA)利用人体姿态信息发现异常。(2) 提出了具有视频级时间依赖性的全局时间强化流(GTSS),它利用视频级时间依赖性有效识别长期异常和特定视频异常。在 EOGT 中联合使用这两种流来学习用于 VAD 的多模态和多尺度时空异常特征,最后融合异常特征和分数来检测帧级别的异常。我们在三个公共数据集上进行了广泛的实验,以验证 EOGT 的性能:这些数据集包括上海科技大学校园、香港中文大学大道和加州大学圣地亚哥分校 Ped2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.50
自引率
5.90%
发文量
285
审稿时长
7.5 months
期刊介绍: The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome. TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.
期刊最新文献
TA-Detector: A GNN-based Anomaly Detector via Trust Relationship KF-VTON: Keypoints-Driven Flow Based Virtual Try-On Network Unified View Empirical Study for Large Pretrained Model on Cross-Domain Few-Shot Learning Multimodal Fusion for Talking Face Generation Utilizing Speech-related Facial Action Units Compressed Point Cloud Quality Index by Combining Global Appearance and Local Details
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1