{"title":"Shear mechanical properties of aggregate cemented materials: a numerical study based on a particle flow modeling strategy","authors":"Yiping Zhang, Chong Shi, Lingkai Zhang, Yulong Zhang, Xiao Chen, Junxiong Yang","doi":"10.1007/s40571-023-00707-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, three-dimensional laser scanning technology is applied to obtain real geometric data of aggregate particles in cemented materials, and a characterization method of surface roughness of aggregate is proposed to quantify the surface roughness of aggregate. A series of three-dimensional direct shear tests are conducted using particle flow code. The shear mechanical properties of cemented materials with different cementation degrees and different surface roughness levels of aggregate particles are investigated through the direct shear tests. The results show that the roughness level of aggregates and the cementation degree both affect the mechanical properties of cemented materials. As the degree of cementation increases, both of the internal friction angle and cohesion increase. As the degree of roughness increases, the internal friction angle increases while the cohesion decreases. The surface roughness of aggregate is in linear relationship with the internal friction angle and in nonlinear decreasing relationship with the cohesion.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"11 4","pages":"1755 - 1768"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-023-00707-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, three-dimensional laser scanning technology is applied to obtain real geometric data of aggregate particles in cemented materials, and a characterization method of surface roughness of aggregate is proposed to quantify the surface roughness of aggregate. A series of three-dimensional direct shear tests are conducted using particle flow code. The shear mechanical properties of cemented materials with different cementation degrees and different surface roughness levels of aggregate particles are investigated through the direct shear tests. The results show that the roughness level of aggregates and the cementation degree both affect the mechanical properties of cemented materials. As the degree of cementation increases, both of the internal friction angle and cohesion increase. As the degree of roughness increases, the internal friction angle increases while the cohesion decreases. The surface roughness of aggregate is in linear relationship with the internal friction angle and in nonlinear decreasing relationship with the cohesion.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.