{"title":"An effective classification approach for EEG-based motor imagery tasks combined with attention mechanisms","authors":"Jixiang Li, Wuxiang Shi, Yurong Li","doi":"10.1007/s11571-024-10115-y","DOIUrl":null,"url":null,"abstract":"<p>Currently, electroencephalogram (EEG)-based motor imagery (MI) signals have been received extensive attention, which can assist disabled subjects to control wheelchair, automatic driving and other activities. However, EEG signals are easily affected by some factors, such as muscle movements, wireless devices, power line, etc., resulting in the low signal-to-noise ratios and the worse recognition results on EEG decoding. Therefore, it is crucial to develop a stable model for decoding MI-EEG signals. To address this issue and further improve the decoding performance for MI tasks, a hybrid structure combining convolutional neural networks and bidirectional long short-term memory (BLSTM) model, namely CBLSTM, is developed in this study to handle the various EEG-based MI tasks. Besides, the attention mechanism (AM) model is further adopted to adaptively assign the weight of EEG vital features and enhance the expression which beneficial to classification for MI tasks. First of all, the spatial features and the time series features are extracted by CBLSTM from preprocessed MI-EEG data, respectively. Meanwhile, more effective features information can be mined by the AM model, and the softmax function is utilized to recognize intention categories. Ultimately, the numerical results illustrate that the model presented achieves an average accuracy of 98.40% on the public physioNet dataset and faster training process for decoding MI tasks, which is superior to some other advanced models. Ablation experiment performed also verifies the effectiveness and feasibility of the developed model. Moreover, the established network model provides a good basis for the application of brain-computer interface in rehabilitation medicine.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"14 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10115-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, electroencephalogram (EEG)-based motor imagery (MI) signals have been received extensive attention, which can assist disabled subjects to control wheelchair, automatic driving and other activities. However, EEG signals are easily affected by some factors, such as muscle movements, wireless devices, power line, etc., resulting in the low signal-to-noise ratios and the worse recognition results on EEG decoding. Therefore, it is crucial to develop a stable model for decoding MI-EEG signals. To address this issue and further improve the decoding performance for MI tasks, a hybrid structure combining convolutional neural networks and bidirectional long short-term memory (BLSTM) model, namely CBLSTM, is developed in this study to handle the various EEG-based MI tasks. Besides, the attention mechanism (AM) model is further adopted to adaptively assign the weight of EEG vital features and enhance the expression which beneficial to classification for MI tasks. First of all, the spatial features and the time series features are extracted by CBLSTM from preprocessed MI-EEG data, respectively. Meanwhile, more effective features information can be mined by the AM model, and the softmax function is utilized to recognize intention categories. Ultimately, the numerical results illustrate that the model presented achieves an average accuracy of 98.40% on the public physioNet dataset and faster training process for decoding MI tasks, which is superior to some other advanced models. Ablation experiment performed also verifies the effectiveness and feasibility of the developed model. Moreover, the established network model provides a good basis for the application of brain-computer interface in rehabilitation medicine.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.